New Fixed Point Theorem for Generalized Expansion Mappings Utilizing Banach Algebra in \(\bar{\mathcal{G}}\)-CMSs

Authors

  • Anil Kumar Mishra Department of Mathematics, Government V.Y.T. Autonomous P.G. College, Durg, Chhattisgarh, India
  • Padmavati Department of Mathematics, Government V.Y.T. Autonomous P.G. College, Durg, Chhattisgarh, India

DOI:

https://doi.org/10.26713/cma.v16i1.2923

Keywords:

Generalized expansion mapping, Banach Algebras (BA) \(\hat{\mathcal{B}}\), \(\bar{\mathcal{G}}\)-CMS

Abstract

Beg et al. [3, 4] were the first to propose generalized cone metric spaces as a comprehensive framework. They established the presence of fixed points in cone metrics for mappings and generalized metric spaces that adhere to specific contractive conditions. In our article, we introduce novel findings concerning fixed points within the context of \(\bar{\mathcal{G}}\)-Cone Metric Spaces using Banach Algebras (referred to as \(\bar{\mathcal{G}}\)-CMSBA) by utilizing generalized expansion mappings within the framework of Banach algebras.

Downloads

Download data is not yet available.

References

M. Abbas and B. E. Rhoades, Common fixed point results for noncommuting mappings without continuity in generalized metric spaces, Applied Mathematics and Computation 215(1) (2009), 262 – 269, DOI: 10.1016/j.amc.2009.04.085.

O. K. Adewale and E. K. Osawaru, G-cone metric spaces over Banach algebras and some fixed point results, International Journal of Mathematical Analysis and Optimization: Theory and Applications 2019(2) (2019), 546 – 557, URL: http://ijmao.unilag.edu.ng/article/view/480.

I. Beg and M. Abbas and T. Nazir, Common fixed point results in G-cone metric spaces, Journal of Advanced Research in Pure Mathematics 2(4) (2010), 94 – 109.

I. Beg, M. Abbas and T. Nazir, Fixed point results in generalized metric spaces, Acta Universitatis Apulensis 28 (2011), 215 – 232, URL: http://emis.icm.edu.pl/journals/AUA/acta28/Paper20-Acta28-2011.pdf.

I. Beg, M. Abbas and T. Nazir, Genereralized cone metric spaces, The Journal of Nonlinear Science and Applications 3(1) (2010), 21 – 31.

B. C. Dhage, A. M. Pathan and B. E. Rhoades, A general existence principle for fixed point theorems in D-metric spaces, International Journal of Mathematics and Mathematical Sciences 23(7) (2000), 695952, 441 – 448, DOI: 10.1155/S0161171200001587.

L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications 332(2) (2007), 1468 – 1476, DOI: 10.1016/j.jmaa.2005.03.087.

Z. Kadelburg and S. Radenovic, A note on various types of cones and fixed point results in cone metric spaces, Asian Journal of Mathematics and Applications 2013 (2013), Article ID ama0104, 7 pages, URL: https://scienceasia.asia/files/104.pdf.

H. Liu and S. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory and Applications 2013 (2013), article number 320, DOI: 10.1186/1687-1812-2013-320.

A. K. Mishra and Padmavati, On some fixed point theorem in ordered G-cone metric spaces over banach algebra, International Journal of Mathematics and Its Applications 10(4) (2022), 29 – 38.

A. K. Mishra, Padmavati, L. Rathour, V.N. Mishra, Some fixed point theorem using generalized cone metric spaces with Banach algebra, High Technology Letters 29(1) (2023), 153 – 162.

Z. Mustafa, F. Awawdeh and W. Shatanawi, Fixed point theorem for expansive mappings in G-metric spaces, International Journal of Contemporary Mathematical Sciences 5(50) (2010), 2463 – 2472.

Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorems for mappings on complete G-metric spaces, Fixed Point Theory and Applications 2008 (2008), Article number: 189870, DOI: 10.1155/2008/189870.

Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, International Journal of Mathematics and Mathematical Sciences 2009(1) (2009), 283028, DOI: 10.1155/2009/283028.

J. O. Olaleru, Some generalizations of fixed point theorems in cone metric spaces, Fixed Point Theory and Applications 2009 (2009), Article number: 657914, DOI: 10.1155/2009/657914.

M. Özturk and M. Ba¸sarir, On some common fixed point theorems with ϕ-maps on G-cone metric spaces, Bulletin of Mathematical Analysis and Applications 3(1) (2011), 121 – 133, URL: http://www.kurims.kyoto-u.ac.jp/EMIS/journals/BMAA/repository/docs/BMAA3-1-15.pdf.

S. R. Patil and J. N. Salunke, Expansion mapping theorems in G-cone metric spaces, International Journal of Mathematical Analysis 6(44) (2012), 2147 – 2158.

S. Radenovic and B. E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Computers & Mathematics with Applications 57(10) (2009), 1701 – 1707, DOI: 10.1016/j.camwa.2009.03.058.

S. Rezapour and R. Hamlbarani, Some notes on the paper “Cone metric spaces and fixed point theorems of contractive mappings”, Journal of Mathematical Analysis and Applications 345(2) (2008), 719 – 724, DOI: 10.1016/j.jmaa.2008.04.049.

W. Rudin, Functional Analysis, 2nd edition, McGraw-Hill, Inc., New York, xv + 424 pages (1991).

S. Xu and S. Radenovic, Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory and Applications 2014 (2014), article number 102, DOI: 10.1186/1687-1812-2014-102.

X. Zhang, Common fixed point theorems of Lipschitz type mappings in cone metric spaces, Acta Mathematica Sinica (Chinese Series) 53A (2010), 1139–1148.

Downloads

Published

01-07-2025
CITATION

How to Cite

Mishra, A. K., & Padmavati. (2025). New Fixed Point Theorem for Generalized Expansion Mappings Utilizing Banach Algebra in \(\bar{\mathcal{G}}\)-CMSs. Communications in Mathematics and Applications, 16(1), 55–65. https://doi.org/10.26713/cma.v16i1.2923

Issue

Section

Research Article