Upper bound Estimates of Fourth Order Hankel and Toeplitz Determinants for Certain Analytic Functions Connected with Three Leaf Function

Authors

  • Rudrani Rangu Department of Mathematics, Government Degree College (Autonomous), Narsampet, Warangal 506132, Telangana, India https://orcid.org/0009-0002-9458-4926
  • Bharavi Sharma Rayaprolu Department of Mathematics, Kakatiya University, Warangal 506009, Telangana, India https://orcid.org/0000-0003-2814-9774
  • Sambasiva Rao Siginam Department of Humanities and Sciences, SVS Group of Institutions, Warangal 506015, Telangana, India https://orcid.org/0000-0003-0792-679X

DOI:

https://doi.org/10.26713/cma.v16i1.2920

Keywords:

Univalent functions, Starlike functions, Coefficient inequalities, Hankel determinants, Topelitz determinants, Three Leaf domain

Abstract

 The purpose of this paper is to compute upper bounds of Hankel and Toeplitz determinants up to fourth order for some normalized univalent functions defined on the open unit disk in the complex plane associated with three leaf function. Suitable examples are provided in support of proven results.

Downloads

Download data is not yet available.

References

M. F. Ali, D. K. Thomas and A. Vasudevarao, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bulletin of the Australian Mathematical Society 97(2) (2018), 253 – 264, DOI: 10.1017/S0004972717001174.

M. Arif, L. Rani, M. Raza and P. Zaprawa, Fourth Hankel determinant for the family of functions with bounded turning, Bulletin of the Korean Mathematical Society 55(6) (2018), 1703 – 1711, DOI: 10.4134/BKMS.b170994.

M. Arif, M. Raza, H. Tang, S. Hussain and H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Mathematics 17(1) (2019), 1615 – 1630, DOI: 10.1515/math-2019-0132.

M. Arif, O. M. Barukab, S. A. Khan and M. Abbas, The sharp bounds of Hankel determinants for the families of three-leaf-type analytic functions, Fractal and Fractional 6(6) (2022), 291, DOI: 10.3390/fractalfract6060291.

K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications 6 (2010), 1 – 7.

S. Gandhi, Radius estimates for three leaf function and convex combination of starlike functions, in: Mathematical Analysis I: Approximation Theory (ICRAPAM 2018), Springer Proceedings in Mathematics & Statistics, Vol. 306, Springer, Singapore (2020), DOI: 10.1007/978-981-15-1153-0-15.

A. W. Goodman, Univalent Functions, Vols. I and II, Polygonal Publishing House, Washinton, New Jersey (1983).

W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proceedings of the London Mathematical Society s3-18(1) (1968), 77 – 94. DOI: 10.1112/plms/s3-18.1.77.

G. Kaur and G. Singh, Fourth Hankel determinant for a new subclass of Bounded turning functions, Jñanabha 52(1) (2022), 229 – 233, DOI: 10.58250/Jnanabha.2022.52129.

M. G. Khan, B. Ahmad, J. Sokol, Z. Muhammad, W. K. Mashwani, R. Chinram and P. Petchkaew, Coefficient problems in a class of functions with bounded turning associated with sine function, European Journal of Pure and Applied Mathematics 14(1) (2021), 53 – 64, DOI: 10.29020/nybg.ejpam.v14i1.3902.

M. G. Khan, N. E. Cho, T. G. Shaba, B. Ahmad and W. K. Mashwani, Coefficient functionals for a class of bounded turning functions related to modified sigmoid function, AIMS Mathematics 7(2) (2022), 3133 – 3149, DOI: 10.3934/math.2022173.

G. Koride, B. S. Rayaprolu, K. Saroja and K. Yakaiah, Fourth Hankel and Toeplitz determinants for a subclass of analytic functions subordinate to 1+sin z, Mathematica Applicanda (Matematyka Stosowana) 51(2) (2023), 321 – 338, DOI: 10.14708/ma.v51i2.7238.

B. Kowalezyk, A. Lecko and Y. J. Sim, The sharp bound for the Hankel determinant of the third kind for convex functions, Bulletin of the Australian Mathematical Society 97(3) (2018), 435 – 445, DOI: 10.1017/S0004972717001125.

R. J. Libera and E. J. Ziotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proceedings of the American Mathematical Society 87 (1983), 251 – 257, DOI: 10.1090/S0002-9939-1983-0681830-8.

W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Nankai Institute of Mathematics, Nankai Univerity, Tianjin, June 19-23, 1992, International Press, pp. 157 – 169 (1994).

W. Ma, Generalized Zalcman conjecture for starlike and typically real functions, Journal of Mathematical Analysis and Applications 234(1) (1999), 328 – 339, DOI: 10.1006/jmaa.1999.6378.

S. Mandal, P. P. Roy and M. B. Ahmad, Hankel and Toeplitz determinants of logarithmic coefficients of inverse functions for certain classes of univalent functions, Iranian Journal of Science 49 (2025), 243 – 252, DOI: 10.1007/s40995-024-01717-6.

G. Murugusundaramoorthy, K. Vijaya, K. R. Karthikeyan, S. M. El-Deeb and J.-S. Ro, Biunivalent functions subordinated to a three leaf function induced by multiplicative calculus, AIMS Mathematics 9(10) (2024), 26983 – 26999, DOI: 10.3934/math.20241313.

G. Murugusundaramoorthy, M. G. Khan, B. Ahmad, W. K. Mashwani, T. Abdeljawad and Z. Salleh, Coefficient functionals for a class of bounded turning functions connected to three leaf function, Journal of Mathematics and Computer Science 28(3) (2023), 213 – 223, DOI: 10.22436/jmcs.028.03.01.

C. Pommerenke, On the coefficients and Hankel determinants of Univalent functions, Journal of the London Mathematical Society s1-41(1) (1966), 111 – 122, DOI: 10.1112/jlms/s1-41.1.111.

C. Pommerenke, On the Hankel determinants of Univalent functions, Mathematika 14(1) (1967), 108 – 112, DOI: 10.1112/S002557930000807X.

C. Pommerenke, Univalent functions, in: Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, Gotingen (1975).

V. Radhika, S. Sivasubramanian, G. Murugusundaramoorthy and J. M. Jahangiri, Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation, Journal of Complex Analysis 2016(1) (2016), 4960704, DOI: 10.1155/2016/4960704.

S. S. Rao, A Study on Hankel Toeplitz Determinants and Bilinear Transformations, Doctoral Thesis, Department of Mathematics, Kakatiya University, Telangana, India (2024), URL: http://hdl.handle.net/10603/576200.

V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, Comptes Rendus. Mathématique 353(6) (2015), 505 – 510, DOI: 10.1016/j.crma.2015.03.003.

A. Riaz, M. Raza, M. A. Binyamin and A. Saliu, The second and third Hankel determinants for starlike and convex functions associated with three-leaf function, Heliyon 9(1) (2023), e12748, DOI: 10.1016/j.heliyon.2022.e12748.

K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afrika Mathematika 27 (2016), 923 – 939. DOI: 10.1007/s13370-015-0387-7.

L. Shi, M. Arif, K. Ullah, N. Alreshidi and M. Shutaywi, On sharp estimate of third Hankel determinant for a subclass of starlike functions, Fractal and Fractional 6(8) (2022), 437, DOI: 10.3390/fractalfract6080437.

L. Shi, M. Arif, M. Raza and M. Abbas, Hankel determinant containing logarithmic coefficients for bounded turning functions connected to a three-leaf-shaped domain, Mathematics 10(16) (2022), 2924, DOI: 10.3390/math10162924.

L. Shi, M. G. Khan, B. Ahmad, W. K. Mashwani, P. Agarwal and S. Momani, Certain coefficient estimate problems for three-leaf-type starlike functions, Fractal and Fractional 5(4) (2021), 137, DOI: 10.3390/fractalfract5040137.

H. M. Srivastava, G. Kaur and G. Singh, Estimates of the fourth Hanekl determinant for a class of analytic functions with bounded turnings involving Cardioid domains, Journal of Nonlinear and Convex Analysis 22(3) (2021), 511 – 526.

S. P. Vijayalakshmi, T. V. Sudharsan and T. Bulboaca, Symmetric Toeplitz determinants for classes defined by post quantum operators subordinated to the limaçon function, Studia Universitatis Babes-Bolyai Mathematica 69(2) (2024), 299 – 316, DOI: 10.24193/subbmath.2024.2.04.

K. Yakaiah and R. B. Sharma, Fourth Hankel and Toeplitz Determinants for a class of Analytic Univalent Functions subordinated to cos z, Stochastic Modeling and Applications 26(3) (2022), 619 – 623.

K. Yakaiah, R. B. Sharma, K. Ganesh and K. Saroja, Fourth Hankel and Toeplitz determinants for bounded turning functions subordinate to 1+tanh z, Advanced Studies: Euro-Tbilisi Mathematical Journal 16(3) (2023), 1 – 9, DOI: 10.32513/asetmj/193220082321.

K. Yakaiah, R. B. Sharma, V. S. Kumar and S. S. Rao, Fourth Hankel and Toeplitz determinants for reciprocal of Bounded turning functions subordinate to cos z, Communications in Mathematics and Applications 14(2) (2023), 969 – 980, DOI: 10.26713/cma.v14i2.2200

P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterranean Journal of Mathematics 14 (2016), article number 19. DOI: 10.1007/s00009-016-0829-y.

H.-Y. Zhang and H. Tang, Fourth Toeplitz determinants for starlike functions defined by using the sine function, Journal of Function Spaces (2021)(1), 4103772, DOI: 10.1155/2021/4103772.

Downloads

Published

01-07-2025
CITATION

How to Cite

Rangu, R., Rayaprolu, B. S., & Siginam, S. R. (2025). Upper bound Estimates of Fourth Order Hankel and Toeplitz Determinants for Certain Analytic Functions Connected with Three Leaf Function. Communications in Mathematics and Applications, 16(1), 219–232. https://doi.org/10.26713/cma.v16i1.2920

Issue

Section

Research Article