Some New Oscillation Criteria for Certain Class of Quasilinear Elliptic Equations

Authors

  • C. Dhanalakshmi Post Graduate and Research Department of Mathematics, Thiruvalluvar Government Arts College, Namakkal District, Rasipuram 637401, Tamil Nadu, India
  • G. E. Chatzarakis Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education (ASPETE), Marousi 15122, Athens, Greece
  • V. Sadhasivam Post Graduate and Research Department of Mathematics, Thiruvalluvar Government Arts College, Namakkal District, Rasipuram 637401, Tamil Nadu, India
  • S. Priyadharshini Post Graduate and Research Department of Mathematics, Thiruvalluvar Government Arts College, Namakkal District, Rasipuram 637401, Tamil Nadu, India

DOI:

https://doi.org/10.26713/cma.v16i1.2908

Keywords:

Elliptic equations, Quasilinear, Oscillation

Abstract

The main goals of this paper is to investigate a new oscillation for a certain class of quasilinear elliptic equations by using Riccati technique. Our main results are demonstrated with an example.

Downloads

Download data is not yet available.

References

R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, 1st edition, Springer, Dordrecht, xiv + 672 pages (2002), DOI: 10.1007/978-94-017-2515-6.

R. P. Agarwal and D. O’Regan, An Introduction to Ordinary Differential Equations, Springer, New York, xii + 321 pages (2008).

W. Allegretto, Oscillation criteria for quasilinear equations, Canadian Journal of Mathematics 26(4) (1974), 931 – 947.

G. E. Chatzarakis, M. Deepa, N. Nagajothi and V. Sadhasivam, Some new oscillation criteria for second-order hybrid differential equations, Hacettepe Journal of Mathematics and Statistics 49 (2020), 1334 – 1345, DOI: 10.15672/hujms.541773.

L. C. Evans, Partial Differential Equations, 2nd edition, Graduate Studies in Mathematics series, Vol. 19, American Mathematical Society, (1998), DOI: 10.1090/gsm/019.

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 1st edition, Springer, Berlin — Heidelberg, x + 401 pages (1977), DOI: 10.1007/978-3-642-96379-7.

I. M. Glazman, On the negative part of the spectrum of one-dimensional and multidimensional differential operators over vector-functions, Doklady Akademii Nauk SSSR 119(3) (1958), 421 – 424, URL: https://www.mathnet.ru/eng/dan/v119/i3/p421.

V. B. Headley and C. A. Swanson, Oscillation criteria for elliptic equations, Pacific Journal of Mathematics 27(3) (1968), 501 – 506, URL: https://projecteuclid.org/journals/pacific-journal-ofmathematics/volume-27/issue-3/Oscillation-criteria-for-elliptic-equations/pjm/1102983771.pdf.

J. Jaros, T. Kusano and N. Yoshida, Force superlinear oscillation via Picone’s identity, Acta Mathematica Universitatis Comenianae 69(1) (2000), 107 – 113, URL: http://www.iam.fmph.uniba.sk/amuc/_vol-69/_no_1/_jaros/jaros.html.

K. Kreith, Oscillation theorems for elliptic equations, Proceedings of the American Mathematical Society 15 (1964), 341 – 344, DOI: 10.2307/2034499.

T. Kusano and M. Naito, Oscillation and nonoscillation criteria for second order quasilinear differential equations, Acta Mathematica Hungarica 76(1-2) (1997), 81 – 99, DOI: 10.1007/BF02907054.

E. S. Noussair and C. A. Swanson, Oscillation of semilinear elliptic inequalities by Riccati transformation, Canadian Journal of Mathematics 32(4) (1980), 908 – 923, DOI: 10.4153/CJM-1980-069-8.

Ch. G. Philos, Oscillation theorems for linear differential equations of second order, Archiv der Mathematik 53 (1989), 482 – 492, DOI: 10.1007/BF01324723.

S. Priyadharshini and V. Sadhasivam, Forced oscillation of solutions of conformable hybrid elliptic partial differential equations, Journal Computational Mathematics 6(1) (2022), 396 – 412, DOI: 10.26524/cm140.

S. Pudipeddi, Localized radial solutions for nonlinear p-Laplacian equation in Rn, Electronic Journal of Qualitative Theory of Differential Equations 2008(20) (2008), 1 – 23, DOI: 10.14232/ejqtde.2008.1.20.

S. S. Santra, S. Priyadharshini, V. Sadhasivam, J. Kavitha, U. Fernandez-Gamiz, S. Noeiaghdam and K. M. Khedher, On the oscillation of certain class of conformable Emden-Fowler type elliptic partial differential equations, AIMS Mathematics 8(6) (2023), 12622 – 12636, DOI: 10.3934/math.2023634.

C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Mathematics in Science and Engineering Series, Vol. 48, Academic Press, New York, (1968).

D. Wei, T. Ji and X. Zhao, Oscillation and non-oscillation criteria for quasi-linear second order differential equations, WSEAS Transactions on Mathematics 11(7) (2008), 627 – 636.

Z. T. Xu, Oscillation and nonoscillation of solutions of second order damped elliptic differential equations, Acta Mathematica Sincia, Chinese Series 47(6) (2004), 1099 – 1106, DOI: 10.12386/A2004sxxb0136. (in Chinese)

N. Yoshida, Oscillation Theory of Partial Differential Equations, World Scientific, (2008), DOI: 10.1142/7046.

N. Yoshida, Forced oscillation criteria superlinear-sublinear elliptic equations via Picone-type inequality, Journal of Mathematical Analysis and Applications 363(2) (2010), 711 – 717, DOI: 10.1016/j.jmaa.2009.10.008.

R. K. Zhuang, Q. R. Wang and S. M. Zhu, Domain oscillation criteria for second order nonlinear elliptic differential equations, Acta Mathematica Sincia, Chinese Series 48(3) (2005), 527 – 534, DOI: 10.12386/A2005sxxb0063. (in Chinese)

Downloads

Published

01-07-2025
CITATION

How to Cite

Dhanalakshmi , C. ., Chatzarakis, G. E., Sadhasivam, V. ., & Priyadharshini, S. (2025). Some New Oscillation Criteria for Certain Class of Quasilinear Elliptic Equations. Communications in Mathematics and Applications, 16(1), 293–300. https://doi.org/10.26713/cma.v16i1.2908

Issue

Section

Research Article