Restrained Regular Domination on a Litact Graph

Authors

DOI:

https://doi.org/10.26713/cma.v16i1.2895

Keywords:

Graph, Litact graph, Regular domination number, Restrained domination number, Restrained regular domination number

Abstract

We present the first research on restrained regular domination, which is a variant of standard domination. Assume that  is a graph. If every vertex in  has at least one neighbour in both  and , and every vertex in  has an identical degree, then a set  is a ‘restrained regular dominating set’, abbreviated RRDS. The least cardinality of all G’s RRDS is the ‘RRD number of G’, represented by . We ascertain the optimal bounds that can be applied to , and we identify the most optimal lower bounds for  and , both  and  are connected. We also characterise those graphs satisfying these bounds.

Downloads

Download data is not yet available.

References

A. Abiad, S. Akbari, M. H. Fakharan and A. Mehdizadeh, A bound for the p-domination number of a graph in terms of its eigenvalue multiplicities, Linear Algebra and its Applications 658 (2023), 319 – 330, DOI: 10.1016/j.laa.2022.11.008.

Z. Y. Alrikabi, A. A. Omran and H. J. A. Hwaeer, Restrained captive domination number, Open Engineering 14(1) (2024), 20220510, DOI: 10.1515/eng-2022-0510.

J. Amjadi, B. Samadi and L. Volkmann, Total restrained Roman domination, Communications in Combinatorics and Optimization 8(3) (2023), 575 – 587, DOI: 10.22049/CCO.2022.27628.1303.

P. Bärnkopf, Z. L. Nagy and Z. Paulovics, A note on internal partitions: The 5-regular case and beyond, Graphs and Combinatorics 40 (2024), article number 36, DOI: 10.1007/s00373-024-02774-9

Z. Z. Barack, K. A. Sugeng, A. Semanicová-Fenovcíková and M. Baca, Modular irregularity strength of the corona product of graphs, Discrete Mathematics Letters 13 (2024), 111 – 116, DOI: 10.47443/dml.2024.041.

P. Borg, Isolation of regular graphs and k-chromatic graphs, Mediterranean Journal of Mathematics 21 (2024), article number 148, DOI: 10.1007/s00009-024-02680-7.

B. Brešar and M. A. Henning, Best possible upper bounds on the restrained domination number of cubic graphs, Journal of Graph Theory 106 (2024), 763 – 815, DOI: 10.1002/jgt.23095.

R. Burdett, M. Haythorpe and A. Newcombe, Variants of the domination number for flower snarks, Ars Mathematica Contemporanea 24(3) (2024), 26 pages, DOI: 10.26493/1855-3974.2710.f3d.

R. Buvaneswari and K. Umamaheswari, Bondage and non-bondage sets in regular intuitionistic fuzzy graphs, Notes on Intuitionistic Fuzzy Sets 29(3) (2023), 318 – 324, DOI: 10.7546/nifs.2023.29.3.318-324.

L. F. Consistente and I. S. Cabahug, Jr, Restrained global defensive alliances in graphs, European Journal of Pure and Applied Mathematics 17(3) (2024), 2196 – 2209, DOI: 10.29020/nybg.ejpam.v17i3.5156.

S. Hayat, A. Khan, M. J. F. Alenazi and S. Wang, On the binary locating-domination number of regular and strongly-regular graphs, Journal of Mathematical Inequalities 17(4) (2023), 1597 – 1623, DOI: 10.7153/jmi-2023-17-105.

N. C. Hemalatha, S. B. Chandrakala, B. Sooryanarayana and M. V. Kumar, Restrained and total restrained domination of ladder graphs, Communications in Mathematics and Applications 14(4) (2023), 1311 – 1323, DOI: 10.26713/cma.v14i4.2569.

R. J. Hussain, S. S. Hussain, S. Sahoo and M. Pal, Domination number of complete restrained fuzzy graphs, International Journal of Advanced Intelligence Paradigms 24(1/2) (2023), 38 – 48, DOI: 10.1504/ijaip.2023.128073.

T. A. Ibrahim and A. A. Omran, Restrained whole domination in graphs, Journal of Physics: Conference Series 1879 (2020), 032029, DOI: 10.1088/1742-6596/1879/3/032029.

C. Jayasekaran and L. G. Binoja, Relatively prime restrained detour domination number of a graph, Gulf Journal of Mathematics 16(2) (2024), 291 – 297, DOI: 10.56947/gjom.v16i2.1844.

R. Kala and T.R. N. Vasantha, Restrained double domination number of a graph, AKCE International Journal of Graphs and Combinatorics 5(1) (2008), 73 – 82.

D. A. Mojdeh and M. Abdallah, On the total restrained double Italian domination, Journal of Algebra and Related Topics 12(1) (2024), 105 – 126, DOI: 10.22124/jart.2023.24056.1507.

G. B. Monsanto and H. M. Rara, Resolving restrained domination in graphs, European Journal of Pure and Applied Mathematics 14(3) (2021), 829 – 841, DOI: 10.29020/nybg.ejpam.v14i3.3985.

M. H. Muddebihal and M. K. Swati, Restrained lict domination in graphs, International Journal of Research in Engineering and Technology 3(5) (2014), 784 – 790, DOI: 10.15623/ijret.2014.0305145.

K. R. Nair and M. S. Sunitha, Strong domination index in fuzzy graphs, Fuzzy Information and Engineering 16(1) (2024), 1 – 23, DOI: 10.26599/FIE.2023.9270028.

R. S. Rajan, S. Arulanand, S. Prabhu and I. Rajasingh, 2-power domination number for Knödel graphs and its application in communication networks, RAIRO - Operations Research 57(6) (2023), 3157 – 3168, DOI: 10.1051/ro/2023173.

B. Samadi, M. Alishahi, I. Masoumi and D. A. Mojdeh, Restrained Italian domination in graphs, RAIRO - Operations Research 55(2) (2021), 319 – 332, DOI: 10.1051/ro/2021022.

G. Sarmitha, S. Vidyanandini and S. R. Nayak, Square difference labeling and co-secure domination in middle graph of certain graphs, Journal of Discrete Mathematical Sciences and Cryptography 27(4) (2024), 1403 – 1413, DOI: 10.47974/JDMSC-1994.

X. Shi, M. Akhoundi, A. A. Talebi and M. Mojahedfar, A study on regular domination in vague graphs with application, Advances in Mathematical Physics 2023(1) (2023), 7098134, DOI: 10.1155/2023/7098134.

C. A. Tuble and E. L. Enriquez, Outer-restrained domination in the join and corona of graphs, International Journal of Latest Engineering Research and Applications 9(1) (2024), 50 – 56, DOI: 10.56581/IJLERA.9.1.50-56.

M. Vani, A. Majeed and V.J. Devi, Edge Litact Domination in graphs, International Journal of Future Generation Communication and Networking 13(3) (2020), 3636 – 3641.

L. Volkmann, Remarks on the restrained Italian domination number in graphs, Communications in Combinatorics and Optimization 8(1) (2023), 183 – 191, DOI: 10.22049/CCO.2021.27471.1269.

B. Xia, Graphical regular representations of (2, p)-generated groups, European Journal of Combinatorics 124 (2025), 104058, DOI: 10.1016/j.ejc.2024.104058.

J. Žerovnik, Rainbow domination regular graphs that are not vertex transitive, Discrete Applied Mathematics 349 (2024), 144 – 147, DOI: 10.1016/j.dam.2024.02.013.

J. Zhang and Y. Zhu, A note on regular sets in Cayley graphs, Bulletin of the Australian Mathematical Society 109(1) (2024), 1 – 5, DOI: 10.1017/S0004972723000084.

Downloads

Published

01-07-2025
CITATION

How to Cite

Shankarajyothi, G., & Reddy, G. U. (2025). Restrained Regular Domination on a Litact Graph. Communications in Mathematics and Applications, 16(1), 367–374. https://doi.org/10.26713/cma.v16i1.2895

Issue

Section

Research Article