Convection in Ferromagnetic Nanoliquids Under Terrestrial Gravity Condition With the Effect of Non-Inertial Acceleration

Authors

DOI:

https://doi.org/10.26713/cma.v14i4.2570

Keywords:

Newtonian ferrofluid, Non-inertial acceleration, Fe3O4-magnetite nanoparticles, Rayleigh-Bénard convection

Abstract

The stability analysis of Rayleigh-Bénard convection subject to the effect of non-inertial acceleration is performed in the presence of nano-sized ferromagnetic particles-Fe\(_3\)O\(_4\), with water, engine oil and kerosene as base fluids subject to external uniform magnetic field. The plots for thermal Rayleigh number and magnetic Rayleigh number versus wave number for different values of Lewis number (Le) and Taylor's number (Ta) are plotted and discussed in detail. Velocity profiles with the effect of non-inertial acceleration of ferrofluid has also been obtained in the study.

Downloads

Download data is not yet available.

References

L. M. Al-Balushi, M. J. Uddin and M. M. Rahman, Natural convective heat transfer in a square enclosure utilizing magnetic nanoparticles, Propulsion and Power Research 8(3) (2019), 194 – 209, DOI: 10.1016/j.jppr.2018.07.009.

B. S. Bhadauria, P. G. Siddheshwar, J. Kumar and O. P. Suthar, Weakly nonlinear stability analysis of temperature/gravity-modulated stationary Rayleigh–Bénard convection in a rotating porous medium, Transport in Porous Media 92 (2012), 633 – 647, DOI: 10.1007/s11242-011-9925-4.

J. K. Bhattacharjee and A. J. McKane, Lorenz model for the rotating Rayleigh-Bernard problem, Journal of Physics A: Mathematical and General 21(10) (1988), L555, DOI: 10.1088/0305-4470/21/10/004.

H. C. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics 20 (1952), 571, DOI: 10.1063/1.1700493.

M. D. Gupta and A. S. Gupta, Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis, International Journal of Engineering Science 17(3) (1979), 271 – 277, DOI: 10.1016/0020-7225(79)90090-9.

R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, Industrial & Engineering Chemistry Fundamentals 1(3) (1962), 187 – 191, DOI: 10.1021/i160003a005.

W. Huang, J. Wu, W. Guo, R. Li and L. Cui, Initial susceptibility and viscosity properties of low concentration ε-Fe3N based magnetic fluid, Nanoscale Research Letters 2 (2007), Article number 155, DOI: 10.1007/s11671-007-9047-7.

C. Kanchana, O. P. Suthar and P. G. Siddheshwar, A study of Rayleigh-Bénard-Taylor convection in very-shallow, shallow, square and tall enclosures, International Journal of Applied and Computational Mathematics 6 (2020), article number 78, DOI: 10.1007/s40819-020-00833-2.

A. Mahajan and M. K. Sharma, The onset of penetrative convection stimulated by internal heating in a magnetic nanofluid saturating a rotating porous medium, Canadian Journal of Physics 96(8) (2018), 898 – 911, DOI: 10.1139/cjp-2017-0640.

A. Mahajan, M. K. Sharma and Sunil, Convection in rotating magnetic nanofluids in porous media, Journal of Nanofluids 3(4) (2014), 350 – 360, DOI: 10.1166/jon.2014.1120.

H. T. Rossby, A study of Bénard convection with and without rotation, Journal of Fluid Mechanics 36(2) (1969), 309 – 335, DOI: 10.1017/S0022112069001674.

S. Saravanan, Centrifugal acceleration induced convection in a magnetic fluid saturated anisotropic rotating porous medium, Transport in Porous Media 77 (2009), 79 – 86, DOI: 10.1007/s11242-008-9263-3.

R. Sekar, G. Vaidyanathan and A. Ramanathan, The ferroconvection in fluids saturating a rotating densely packed porous medium, International Journal of Engineering Science 31(2) (1993), 241 – 250, DOI: 10.1016/0020-7225(93)90037-U.

I. S. Shivakumara, J. Lee, C. E. Nanjundappa and M. Ravisha, Ferromagnetic convection in a rotating ferrofluid saturated porous layer, Transport in Porous Media 87 (2011), 251 – 273, DOI: 10.1007/s11242-010-9678-5.

P. G. Siddheshwar, O. P. Suthar and K. Chinnaswamy, Finite-amplitude ferro-convection and electro-convection in a rotating fluid, SN Applied Sciences 1 (2019), Article number 1542, DOI: 10.1007/s42452-019-1549-2.

Sunil and A. Mahajan, A nonlinear stability analysis for rotating magnetized ferrofluid heated from below, Applied Mathematics and Computation 204(1) (2008), 299 – 310, DOI: 10.1016/j.amc.2008.06.043.

P. Vadasz, Fluid flow and heat transfer in rotating porous media, in: SpringerBriefs in Applied Sciences and Technology, Springer Cham, xii + 78 pages (2016), DOI: 10.1007/978-3-319-20056-9.

P. Vadasz, Instability and convection in rotating porous media: a review, Fluids 4(3) (2019), 147, DOI: 10.3390/fluids4030147.

G. Vaidyanathan, R. Sekar, R. Vasanthakumari and A. Ramanathan, The effect of magnetic field dependent viscosity on ferroconvection in a rotating sparsely distributed porous medium, Journal of Magnetism and Magnetic Materials 250 (2002), 65 – 76, DOI: 10.1016/S0304-8853(02)00355-4.

D. Yadav, R. Bhargava, G. S. Agrawal, G. S. Hwang, J. Lee and M. C. Kim, Magneto-convection in a rotating layer of nanofluid, Asia-Pacific Journal of Chemical Engineering 9(5) (2014), 663 – 677, DOI: 10.1002/apj.1796.

J.-Q. Zhong, R. J. A. M. Stevens, H. J. H. Clercx, R. Verzicco, D. Lohse and G. Ahlers, Prandtl-, Rayleigh-, and Rossby-Number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection, Physical Review Letters 102 (2009), 044502, DOI: 10.1103/PhysRevLett.102.044502.

Downloads

Published

25-12-2023
CITATION

How to Cite

Rajashree, S., & Chandrashekara, N. P. (2023). Convection in Ferromagnetic Nanoliquids Under Terrestrial Gravity Condition With the Effect of Non-Inertial Acceleration. Communications in Mathematics and Applications, 14(4), 1325–1340. https://doi.org/10.26713/cma.v14i4.2570

Issue

Section

Research Article