Study of Activation Energy of Magnetohydrodynamic Radiative Casson Nanofluid With Darcy-Forchheimer Flow and Cattaneo-Christov Heat Flux Model

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2111

Keywords:

Activation energy, Casson nano fluid, Darcy-Forchheimer flow, Shooting method, Cattaneo-Christov heat flux

Abstract

In the present paper, the Activation Energy (AE) of a radiative magnetohydrodynamic (MHD) Casson nano fluid with Darcy-Forchheimer flow, and Cattaneo-Christov heat flux model across a linearly stretched sheet under convective boundary conditions was numerically explored. The influence of different factors on profiles of temperature, velocity, and concentration was investigated and graphically interpreted. The acquired results are extremely similar to those found in the open literature. The profile of velocity was observed for porosity parameter, Casson fluid parameter, Forchheimer parameter, and magnetic parameter. The temperature profile was observed for porosity parameter, Forchheimer parameter, Brownian motion parameter, magnetic parameter, thermophoresis parameter, Casson fluid parameter, Biot number, thermal relaxation parameter, and radiation parameter. The concentration profile was examined for porosity parameter, Activation Energy (AE), temperature difference, thermophoresis parameter, chemical reaction rate constant, parameter of Brownian motion, and Lewis number. Also, local Nusselt number, coefficient of skin friction, and local Sherwood number were found for different parameters.

Downloads

Download data is not yet available.

Author Biography

Vajja Ramesh, Department of Mathematics, Osmania University, Hyderabad, Telangana, India

Research Scholar

References

W. Abbas and M. M. Magdy, Heat and mass transfer analysis of nanofluid flow based on Cu, Al2O3, and TiO2 over a moving rotating plate and impact of various nanoparticle shapes, Mathematical Problems in Engineering 2020 (2020), Article ID 9606382, 12 pages, DOI: 10.1155/2020/9606382.

S. Anuradha and K. Sashikala, MHD free convective flow of a nanofluid over a permeable shrinking sheet with binary chemical reaction and activation energy, International Journal of Engineering Science Invention 7(1) (2018), 22 – 30, URL: http://www.ijesi.org/papers/Vol(7)i1/Version-1/D0701012230.pdf.

E. M. Arthur, I. Y. Seini and L. B. Bortteir, Analysis of casson fluid flow over a vertical porous surface with chemical reaction in the presence of magnetic field, Journal of Applied Mathematics and Physics 3(6) (2015), 713 – 723, DOI: 10.4236/jamp.2015.36085.

S. M. Atif, S. Shah and A. Kamran, Effect of MHD on Casson fluid with Arrhenius activation energy and variable properties, Scientia Iranica F 29(6) (2022), 3570 – 3581, DOI: 10.24200/SCI.2021.57873.5452.

T. Aziz, F. M. Mahomed, A. Shahzad and R. Ali, Travelling wave solutions for the unsteady flow of a third grade fluid induced due to impulsive motion of flat porous plate embedded in a porous medium, Journal of Mechanics 30(5) (2014), 527 – 535, DOI: 10.1017/jmech.2014.17.

A. R. Bestman, Natural convection boundary layer with suction and mass transfer in a porous medium, International Journal of Energy Research 14(4) (1990), 389 – 396, DOI: 10.1002/er.4440140403.

M. Bilal, I. Khan, T. Gul, A. Tassaddiq, W. Alghamdi, S. Mukhtar and P. Kumam, Darcy-Forchheimer hybrid nano fluid flow with mixed convection past an inclined cylinder, Computers, Materials & Continua 66(2) (2021), 2025 – 2039, DOI: 10.32604/cmc.2020.012677.

N. Casson, A Flow equation for pigment-oil suspensions of the printing ink type, in: Rheology of Disperse Systems, C. C. Mill (editor), Pergamon Press, Oxford, pp. 84 – 104 (1959).

S. Charm and G. Kurland, Viscometry of human blood for shear rates of 0-100,000 sec−1, Nature 206 (1965), 617 – 618, URL: https://www.nature.com/articles/206617a0.

R. K. Dash, K. N. Mehta and G. Jayaraman, Casson fluid flow in a pipe filled with a homogeneous porous medium, International Journal of Engineering Science 34(10) (1996), 1145 – 1156, DOI: 10.1016/0020-7225(96)00012-2.

G. L. Devi, H. Niranjan and S. Sivasankaran, Effects of chemical reactions, radiation, and activation energy on MHD buoyancy induced nano fluidflow past a vertical surface, Scientia Iranica B 29(1) (2022), 90 – 100, DOI: 10.24200/sci.2021.56835.4934.

M. Dhlamini, P. K. Kameswaran, P. Sibanda, S. Motsa and H. Mondal, Activation energy and binary chemical reaction effects in mixed convective nanofluid flow with convective boundary conditions, Journal of Computational Design and Engineering 6(2) (2019), 149 – 158, DOI: 10.1016/j.jcde.2018.07.002.

S. Eswaramoorthi, N. Alessa, M. Sangeethavaanee, S. Kayikci and N. Namgyel, Mixed convection and thermally radiative flow of MHD Williamson nanofluid with Arrhenius activation energy and Cattaneo–Christov heat-mass flux, Journal of Mathematics 2021 (2021), Article ID 2490524, DOI: 10.1155/2021/2490524.

N. V. Ganesh, A. K. A. Hakeem and B. Ganga, Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects, Ain Shams Engineering Journal 9(4) (2018), 939 – 951, DOI: 10.1016/j.asej.2016.04.019.

T. Gangaiah, N. Saidulu and A. V. Lakshmi, The influence of thermal radiation on mixed convection MHD flow of a Casson nonfluid over an exponentially stretching sheet, International Journal of Nanoscience and Nanotechnology 15(2) (2019), 83 – 98, URL: http://www.ijnnonline.net/article_35419.html.

T. Hayat, F. Haider and A. Alsaedi, Darcy-Forchheimer flow with nonlinear mixed convection, Applied Mathematics and Mechanics 41 (2020), 1685 – 1696, DOI: 10.1007/s10483-020-2680-8.

T. Hayat, F. Shah, Z. Hussain and A. Al-Saedi, Darcy-Forchheimer flow of Jeffrey nanofluid with heat generation/absorption and melting heat transfer, Thermal Science 23(6) (Part B) (2019), 3833 – 3842, DOI: 10.2298/TSCI171222314H.

C.-J. Huang, Arrhenius activation energy effect on free convection about a permeable horizontal cylinder in porous media, Transport in Porous Media 128 (2019), 723 – 740, DOI: 10.1007/s11242-019-01267-1.

M. Ijaz, M. S. Alqarni, F. Salah and M. Y. Malik, Numerical simulation of Joule heating and Arrhenius activation energy for nonlinear radiative flow of Casson nanofluid with Cattaneo–Christov heat flux model, Physica Scripta 95(2) (2020), 025401, DOI: 10.1088/1402-4896/ab41ac.

S. Jabeen, T. Hayat, S. Qayyum and A. Alsaedi, Significance of activation energy in stratified flow of tangent hyperbolic fluid, International Journal of Numerical Methods for Heat & Fluid Flow 29(8) (2019), 2932 – 2947, DOI: 10.1108/HFF-12-2018-0795.

M. Jawad, A. Saeed, T. Gul and A. Bariq, MHD Darcy-Forchheimer flow of Casson nanofluid due to a rotating disk with thermal radiation and Arrhenius activation energy, Journal of Physics Communications 5(2) (2021), 025008, DOI: 10.1088/2399-6528/abe4e0.

A. Majeed, F. M. Noori, A. Zeeshan, T. Mahmood, S. U. Rehman and I. Khan, Analysis of activation energy in magnetohydrodynamic flow with chemical reaction and second order momentum slip model, Case Studies in Thermal Engineering 12 (2018), 765 – 773, DOI: 10.1016/j.csite.2018.10.007.

K. A. Maleque, Effects of binary chemical reaction and activation energy on MHD boundary layer heat and mass transfer flow with viscous dissipation and heat generation/absorption, International Scholarly Research Notices 2013 (2013), Article ID 284637, 9 pages, DOI: 10.1155/2013/284637.

T. Muhammad, A. Alsaedi, S. A. Shehzad and T. Hayat, A revised model for Darcy-Forchheimer flow of Maxwell nanofluid subject to convective boundary condition, Chinese Journal of Physics 55(3) (2017), 963 – 976, DOI: 10.1016/j.cjph.2017.03.006.

S. Mukhopadhyay, K. Vajravelu and R. A. V. Gorder, Casson fluid flow and heat transfer at an exponentially stretching permeable surface, Journal of Applied Mechanics 80(5) (2013), 054502, DOI: 10.1115/1.4023618.

M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi, Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy, International Journal of Heat and Mass Transfer 108(Part B) (2017), 1340 – 1346, DOI: 10.1016/j.ijheatmasstransfer.2017.01.029.

S. Nadeem, R. U. Haq and N. S. Akbar, MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition, IEEE Transactions on Nanotechnology 13(1) (2014), 109 – 115, DOI: 10.1109/TNANO.2013.2293735.

K. V. Prasad, H. Vaidya, K. Vajravelu and V. Ramanjini, Analytical study of Cattaneo-Christov heat flux model for Williamson-Nanofluid flow over a slender elastic sheet with variable thickness, Journal of Nanofluids 7(3) (2018), 583 – 594, DOI: 10.1166/jon.2018.1475.

K. Rafique, M. I. Anwar, M. Misiran, I. Khan, S. O. Alharbi, P. Thounthong and K. S. Nisar, Numerical solution of Casson nanofluid flow over a non-linear inclined surface with Soret and Dufour effects by Keller-Box method, Frontiers in Physics 7 (2019), Article 139, DOI: 10.3389/fphy.2019.00139.

K. V. Ramana, K. Gangadhar, T. Kannan and A. J. Chamkha, Cattaneo–Christov heat flux theory on transverse MHD Oldroyd-B liquid over nonlinear stretched flow, Journal of Thermal Analysis and Calorimetry 147 (2022), 2749 – 2759, DOI: 10.1007/s10973-021-10568-x.

G. K. Ramesh, Darcy-Forchheimer flow of Casson nanofluid with heat source/sink: A three-dimensional study, in: Heat and Mass Transfer – Advances in Modelling and Experimental Study for Industrial Applications, Y. Ren (editor), IntechOpen, London, 158 pages (2018), DOI: 10.5772/intechopen.74170.

G. Rasool and T. Zhang, Darcy-Forchheimer nanofluidic flow manifested with Cattaneo-Christov theory of heat and mass flux over non-linearly stretching surface, PLoS ONE 14(8) (2019), e022130, DOI: 10.1371/journal.pone.0221302.

C. S. Reddy and K. Naikoti, MHD boundary layer flow of Casson nanofluid over a non linear stretching sheet with viscous dissipation and convective condition, Journal of Nanofluids 5(6) (2016), 870 – 879, DOI: 10.1166/jon.2016.1271.

S. R. R. Reddy, P. B. A. Reddy and A. M. Rashad, Effectiveness of binary chemical reaction on magneto-fluid flow with Cattaneo–Christov heat flux model, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235(12) (2021), 2192 – 2200, DOI: 10.1177/0954406220950347.

T. Sajid, M. Sagheer, S. Hussain and M. Bilal, Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy, AIP Advances 8 (2018), 035102, DOI: 10.1063/1.5019218.

D. Sarve, P. K. Gaur and V. K. Sharma, Numerical simulation for activation energy impact on Darcy-Forchheimer flow of casson fluid suspended with nano particles over a stretching cylinder, Science & Technology Asia 26(4) (2021), 106 – 114, URL: https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/245885.

D. U. Sarwe, B. Shanker, R. Mishra, R. S. Varun Kumar and M. N. R. Shekar, Simultaneous impact of magnetic and Arrhenius activation energy on the flow of Casson hybrid nanofluid over a vertically moving plate, International Journal of Thermofluid Science and Technology 8(2) (2020), paper number 080202, DOI: 10.36963/IJTST.2021080202.

Z. Shah, P. Kumam and W. Deebani, Radiative MHD Casson nanofluid flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation, Scientific Reports 10 (2020), Article number: 4402, DOI: 10.1038/s41598-020-61125-9.

N. Thamaraikannan, S. Karthikeyan, D. K. Chaudhary and S. Kayikci, Analytical investigation of magnetohydrodynamic non-newtonian type casson nanofluid flow past a porous channel with periodic body acceleration, Complexity 2021 (2021), Article ID 7792422, 17 pages, DOI: 10.1155/2021/7792422.

I. Ullah, I. Khan and S. Shafie, MHD natural convection flow of casson nanofluid over nonlinearly stretching sheet through porous medium with chemical reaction and thermal radiation, Nanoscale Research Letters 11 (2016), Article number: 527, DOI: 10.1186/s11671-016-1745-6.

W. P. Walwander T. Y. Chen and D. F. Cala, An approximate Casson fluid model for tube flow of blood, Biorheology 12(2) (1975), 111 – 119, DOI: 10.3233/BIR-1975-12202.

M. Waqas, S. Naz, T. Hayat and A. Alsaedi, Numerical simulation for activation energy impact in Darcy–Forchheimer nanofluid flow by impermeable cylinder with thermal radiation, Applied Nanoscience 9(5) (2019), 1173 – 1182, DOI: 10.1007/s13204-018-00940-z.

M. Younus and A. V. Lakshmi, Numerical investigation of activation energy of radiative magnetohydrodynamic Williamson nanofluid flow, Heat Transfer 51(7) (2022), 6197 – 6222, DOI: 10.1002/htj.22588.

Downloads

Published

18-09-2023
CITATION

How to Cite

Younus, M., Venkatalakshmi, A., & Ramesh, V. (2023). Study of Activation Energy of Magnetohydrodynamic Radiative Casson Nanofluid With Darcy-Forchheimer Flow and Cattaneo-Christov Heat Flux Model. Communications in Mathematics and Applications, 14(2), 981–999. https://doi.org/10.26713/cma.v14i2.2111

Issue

Section

Research Article