Onset of Internally Heated Convection in a Porous Layer With Variable Gravity: A Brinkmann Model

Authors

  • M. Venkateshwar Rao Department of Mathematics, Vasavi College of Engineering (Osmania University), Hyderabad 500031, Telangana, India; Department of Mathematics, Osmania University, Hyderabad 500007, Telangana, India https://orcid.org/0009-0009-9231-3832
  • Lokapavani Department of Mathematics, Osmania University College for Women Koti (Osmania University), Hyderabad 500095, Telangana, India https://orcid.org/0009-0001-5494-6833
  • M. Pavan Kumar Reddy Department of Mathematics, VNR Vignana Jyothi Institute of Engineering and Technology (Jawaharlal Nehru Technological University), Hyderabad 500090, Telangana, India https://orcid.org/0000-0001-8854-6689
  • P. Raghavendra Department of Mathematics, Malla Reddy University, Hyderabad 500100, India https://orcid.org/0009-0007-0235-2033

DOI:

https://doi.org/10.26713/cma.v14i5.2073

Keywords:

Linear stability, Porous layer, Variable gravity

Abstract

The influence of heat source, and variable gravity field on the stability of convective phenomena in a porous layer is investigated numerically by considering Brinkmann’s model. Three types of gravity variations, such as, linear, parabolic, and cubic functions are considered. For linear theory, the method of normal modes has been employed to solve governing dimensionless equations which led an eigenvalue problem. The onset of convection is delayed by increasing Darcy number and gravity variation parameter. An enhancement of internal heat source makes the system unstable.

Downloads

Download data is not yet available.

References

S.M. Alex, P.R. Patil and K.S. Venkatakrishnan, Variable gravity effects on thermal instability in a porous medium with internal heat source and inclined temperature gradient, Fluid Dynamics Research 29(1) (2001), 1, DOI: 10.1016/S0169-5983(01)00016-8.

S.M. Alex and P.R. Patil, Effect of a variable gravity field on convection in an anisotropic porous medium with internal heat source and inclined temperature gradient, Journal of Heat and Mass Transfer 124(1) (2002), 144 – 150, DOI: 10.1115/1.1420711.

S.M. Alex and P.R. Patil, Effect of variable gravity field on soret driven thermosolutal convection in a porous medium, International Communications in Heat and Mass Transfer 28(4) (2001), 509 – 518, DOI: 10.1016/S0735-1933(01)00255-X.

A.B. Babu, R. Ravi and S.G. Tagare, Nonlinear rotating convection in a sparsely packed porous medium, Communications in Nonlinear Science and Numerical Simulation 17(12) (2012), 5042 – 5063, DOI: 10.1016/j.cnsns.2012.04.014.

B.S. Bhadauria, P.G. Siddheshwar, J. Kumar and O.P. Suthar, Weakly nonlinear stability analysis of temperature/gravity-modulated stationary Rayleigh-Bénard convection in a rotating porous medium, Transport in Porous Media 92 (2012), 633 – 647, DOI: 10.1007/s11242-011-9925-4.

R. Chand, Effect of suspended particles on Thermal instability of Maxwell Visco-elastic fluid with variable gravity in porous medium, Antarctica Journal of Mathematics 8(6) (2011), 487 – 497.

R. Chand, Thermal instability of rotating Maxwell visco-elastic fluid with variable gravity in porous medium, Journal of the Indian Mathematical Society 80(1-2) (2013), 23 – 31.

R. Chand, G.C. Rana and S. Kumar, Variable gravity effects on thermal instability of nanofluid in anisotropic porous medium, International Journal of Applied Mechanics and Engineering 18(3) (2013), 631 – 642, DOI: 10.2478/ijame-2013-0038.

R. Chand, G.C. Rana and S.K. Kango, Effect of variable gravity on thermal instability of rotating nanofluid in porous medium, FME Transactions 43(1) (2015), 62 – 69, DOI: 10.5937/FMET1501062C.

N. Deepika and P.A.L. Narayana, Effects of vertical throughflow and variable gravity on Hadley-Prats flow in a porous medium, Transport in Porous Media 109 (2015), 455 – 468, DOI: 10.1007/s11242-015-0528-3.

J.W. Elder, Steady free convection in a porous medium heated from below, Journal of Fluid Mechanics 27(1) (1967), 29 – 48, DOI: 10.1017/S0022112067000023.

A.J. Harfash, Three-dimensional simulations for convection in a porous medium with internal heat source and variable gravity effects, Transport in Porous Media 101 (2014), 281 – 297, DOI: 10.1007/s11242-013-0245-8.

A.J. Harfash and A.K. Alshara, Chemical reaction effect on double diffusive convection in porous media with magnetic and variable gravity effects, Korean Journal of Chemical Engineering 32(6) (2015), 1046 – 1059, DOI: 10.1007/s11814-014-0327-5.

G.M. Homsy and A.E. Sherwood, Convective instabilities in porous media with through flow, AIChE Journal 22(1) (1976), 168 – 174, DOI: 10.1002/AIC.690220121.

C.W. Horton and F.T. Rogers Jr., Convection currents in a porous medium, Journal of Applied Physics 16(6) (1945), 367 – 370, DOI: 10.1063/1.1707601.

P.N. Kaloni and Z. Qiao, Non-linear convection in a porous medium with inclined temperature gradient and variable gravity effects, International Journal of Heat and Mass Transfer 44(8) (2001), 1585 – 1591, DOI: 10.1016/S0017-9310(00)00196-4.

S. Kumari and P.V.S.N. Murthy, Convective stability of vertical throughflow of a non-newtonian fluid in a porous channel with soret effect, Transport in Porous Media 122 (2018), 125 – 143, DOI: 10.1007/s11242-017-0993-y.

A.V. Kuznetsov and D.A. Nield, Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid, Transport in Porous Media 83 (2010), 425 – 436, DOI: 10.1007/s11242-009-9452-8.

A.V. Kuznetsov and D.A. Nield, The onset of double-diffusive nanofluid convection in a layer of saturated porous medium, Transport in Porous Media 85 (2010), 941 – 951, DOI: 10.1007/s11242-010-9600-1.

A.V. Kuznetsov and D.A. Nield, Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model, Transport in Porous Media 81 (2010), 409 – 422, DOI: 10.1007/s11242-009-9413-2.

E.R. Lapwood, Convection of a fluid in a porous medium, Mathematical Proceedings of the Cambridge Philosophical Society 44(4) (1948), 508 – 521, DOI: 10.1017/S030500410002452X.

U.S. Mahabaleshwar, D. Basavaraja, S. Wang, G. Lorenzini and E. Lorenzini, Convection in a porous medium with variable internal heat source and variable gravity, International Journal of Heat and Mass Transfer 111 (2017), 651 – 656, DOI: 10.1016/j.ijheatmasstransfer.2017.04.030.

A. Mahajan and M. Arora, Convection in rotating magnetic nanofluids, Applied Mathematics and Computation 219(11) (2013), 6284-6296, DOI: 10.1016/j.amc.2012.12.012.

A. Mahajan and M.K. Sharma, The onset of convection in a magnetic nanofluid layer with variable gravity effects, Applied Mathematics and Computation 339 (2018), 622 – 635, DOI: 10.1016/j.amc.2018.07.062.

D.A. Nield, Convection in a porous medium with inclined temperature gradient and vertical throughflow, International Journal of Heat and Mass Transfer 41(1) (1998), 241 – 243, DOI: 10.1016/S0017-9310(97)00103-8.

D.A. Nield and A. Bejan, Convection in Porous Media, Springer, New York, xxvi + 778 pages (2013), DOI: 10.1007/978-1-4614-5541-7.

D.A. Nield and A.V. Kuznetsov, Thermal instability in a porous medium layer saturated by a nanofluid: A revised model, International Journal of Heat and Mass Transfer 68 (2014), 211 – 214, DOI: 10.1016/j.ijheatmasstransfer.2013.09.026.

G.K. Pradhan and P.C. Samal, Thermal stability of a fluid layer under variable body forces, Journal of Mathematical Analysis and Applications 122(2) (1987), 487 – 495, DOI: 10.1016/0022-247X(87)90280-0.

R. Ravi, C. Kanchana and P.G. Ssddheshwar, Effects of second diffusing component and cross diffusion on primary and secondary thermoconvective instabilities in couple stress liquids, Applied Mathematics and Mechanics 38 (2017), 1579 – 1600, DOI: 10.1007/s10483-017-2280-9.

R. Ravi, C. Kanchana, G.J. Reddy and H. Basha, Study of Soret and Dufour effects and secondary instabilities on Rayleigh-Bénard convection in a couple stress fluid, The European Physical Journal Plus 133 (2018), Article number 513, DOI: 10.1140/epjp/i2018-12321-6.

G.S.K. Reddy and R. Ragoju, Thermal instability of a power-law fluid-saturated porous layer with an internal heat source and vertical throughflow, Heat Transfer 51(2) (2022), 2181 – 2200, DOI: 10.1002/htj.22395.

G.S.K. Reddy and R. Ravi, Thermal instability of a maxwell fluid saturated porous layer with chemical reaction, Special Topics & Reviews in Porous Media: An International Journal 13(1) (2022), 33 – 47, DOI: 10.1615/SpecialTopicsRevPorousMedia.2021037410.

S. Rionero and B. Straughan, Convection in a porous medium with internal heat source and variable gravity effects, International Journal of Engineering Science 28(6) (1990), 497 – 503, DOI: 10.1016/0020-7225(90)90052-K.

B. Straughan, Convection in a variable gravity field, Journal of Mathematical Analysis and Applications 140(2) (1989), 467 – 475, DOI: 10.1016/0022-247X(89)90078-4.

S.P. Suma and Y.H. Gangadharaiah and R. Indira, Effect of throughflow and variable gravity field on thermal convection in a porous layer, International Journal of Engineering Science and Technology 3(10) (2011), 7657 – 7668.

D. Yadav, Effects of rotation and varying gravity on the onset of convection in a porous medium layer: a numerical study, World Journal of Engineering 17(6) (2020), 785 – 793, DOI: 10.1108/WJE-03-2020-0086.

D. Yadav, Numerical investigation of the combined impact of variable gravity field and throughflow on the onset of convective motion in a porous medium layer, International Communications in Heat and Mass Transfer 108 (2019), 104274, DOI: 10.1016/j.icheatmasstransfer.2019.104274.

D. Yadav, Numerical solution of the onset of Buoyancy-driven nanofluid convective motion in an anisotropic porous medium layer with variable gravity and internal heating, Heat Transfer 49(3) (2020), 1170 – 1191, DOI: 10.1002/htj.21657.

D. Yadav, The density-driven nanofluid convection in an anisotropic porous medium layer with rotation and variable gravity field: a numerical investigation, Journal of Applied and Computational Mechanics 6(3) (2020), 699 – 710, DOI: 10.22055/JACM.2019.31137.1833.

D. Yadav, The onset of Darcy-Brinkman convection in a porous medium layer with vertical throughflow and variable gravity field effects, Heat Transfer 49(5) (2020), 3161 – 3173, DOI: 10.1002/htj.21767.

Downloads

Published

16-04-2024
CITATION

How to Cite

Venkateshwar Rao, M., Lokapavani, Pavan Kumar Reddy, M., & Raghavendra, P. (2024). Onset of Internally Heated Convection in a Porous Layer With Variable Gravity: A Brinkmann Model. Communications in Mathematics and Applications, 14(5), 1727–1737. https://doi.org/10.26713/cma.v14i5.2073

Issue

Section

Research Article