Interpolating Some Classes of Operators between Families

Alexi Quevedo Suárez

Abstract


Many operator ideals (single operator ideals and chains, see inside) possess the strong property of interpolation for the $J$ and $K$ methods of Lions-Peetre, Sparr, Fernandez and Cobos-Peetre. That is, let $\mathcal{I}$ be one of the ideals considered here, let $\bar{A}$ and $\bar{B}$ be interpolation families and $T : \bar{A}\to\bar{B}$ a bounded linear operator then, the interpolated operator $T_{J;K} : J(\bar{A})\to K(\bar{B})$ belongs to $\mathcal{I}$ if and only if the induced operator $T_{\mathcal{JS}}$ from the intersection space $\mathcal{J} (\bar{A})$ into the sum space $\mathcal{S}(B)$ belongs to $\mathcal{I}$.

Keywords


Real methods of interpolation between families; Operator ideals

Full Text:

PDF

References


B. Beauzamy, Banach-Saks Properties and Spreading Models, Math. Scand. 44(1979), 357-384.

J. Behrg and J. Lofstrom, Interpolation spaces. An introduction, Springer-Verlag, New York, 1976.

M.J. Carro, Real interpolation for families of Banach spaces, Studia Math. 109 (1994), 1-21.

M.J. Carro, Real interpolation for families of Banach spaces (II), Collect. Math. 45(1994), 53-83.

M.J. Carro and L.Y. Nikolova, Interpolation of limited and weakly compact operators on families of Banach spaces, Acta Appl. Math 49(1997), 151-177.

M.J. Carro, L.Y. Nikolova, J. Peetre and L.E. Persson, Some real interpolation methods for families of Banach spaces - A comparison, J. Approx. Theory 89(1997), 26-57.

F. Cobos and J. Peetre, Interpolation of compact operators: the multidimensional case, Proc. London Math. Soc. (3) 63(1991), 371-400.

R. R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher and G. Weiss, A theory of complex interpolation for families of Banach spaces, Adv. Math. 45(1982), 203-229.

W. Davis, T. Figiel, W. Johnson and A. Pelczynski, Factoring weakly compact operators, J. Funct. anal. 17(1974), 311-327.

D. L. Fernandez, Interpolation of $2^d$ Banach spaces and the Calderon spaces $mathcal{X}(E)$, Proc. London Math. Soc. (3) 56(1988), 143-162.

S. Heinrich, Closed operator ideals and interpolation, J. Funct. Anal. 35(1980), 397-411.

K. Homan, Banach Spaces of analytic functions, Englewood Cliffs, Prentice-Hall, 1962.

A. Kryczka, Alternate signs Banach-Saks property and real interpolation of operators, Proc. Amer. Math. Soc., vol. 136, 10(2008), 3529-3537.

W.B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, in Handbook of the geometry of Banach spaces, North-Holland (2001).

J.L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Etudes Sci. Publ. Math. 19(1964), 5-68.

J.R. Partington, Proc. Cambridge Philos. Soc. 82(1977), 369-374.

A. Pietsch, Operator ideals, North Holland, Amsterdam, 1980.

A. Quevedo, Factorization of mixed operators, Houston Journal of Mathematics, to appear. Available online at http://www.matematica.ciens.ucv.ve/Professors/aquevedo/factor.pdf

G. Sparr, Interpolation of several Banach spaces, Ann. Mat. Pura Appl. 99(1974), 247-316.




DOI: http://dx.doi.org/10.26713%2Fcma.v5i1.198

Refbacks

  • There are currently no refbacks.


eISSN 0975-8607; pISSN 0976-5905