Numerical Study of Layer Behaviour Differential-Difference Equations With Small Delay Arising in the Nerve Pulse Propagation

Authors

DOI:

https://doi.org/10.26713/cma.v14i1.1970

Keywords:

Singularly perturbed differential-difference equation, Delay, Tridiagonal system, Truncation error

Abstract

In this study, we implement a numerical method to solve a singularly perturbed differential-difference equation with a small shift. Taylor series is used to deal with the small shift, and the given problem converted into a singularly perturbed boundary value problem. To solve this problem, a fourth order finite difference approach is used. The convergence of the method is investigated. The method is supported by the numerical results compared to the other method in the literature. Numerical experiments show how the small shift and perturbation parameter affects the boundary layer solution of the problem.

Downloads

Download data is not yet available.

References

C. W. Cryer, The numerical solution of boundary value problems for second order functional differential equations by finite differences, Numerische Mathematik 20 (1972), 288 – 289, DOI: 10.1007/BF01407371.

M. W. Derstine, H. M. Gibbs, F. A. Hopf and D. L. Kaplan, Bifurcation gap in a hybrid optically bistable system, Physical Review A 26 (1982), 3720 – 3722, DOI: 10.1103/PhysRevA.26.3720.

E. P. Doolan, J. J. H. Miller and W. H. A. Schilders, Uniform Numerical Methods for Problems With Initial and Boundary Layer, Boole Press, Dublin (1980), DOI: 10.1002/nme.1620180814.

M. M. M. A. Feldstein, Discretization Methods for Retarded Ordinary Differential Equations, Doctoral thesis, University of California, Los Angeles (1964).

E. C. Gartland, Uniform high-order difference schemes for a singularly perturbed two-point boundary value problem, Mathematics of Computation 48 (1987), 551 – 564, DOI: 10.1090/S0025-5718-1987-0878690-0.

J. K. Hale, Functional differential equations, in: Analytic Theory of Differential Equations, P. F. Hsieh and A. W. J. Stoddart (editors), Lecture Notes in Mathematics, Vol. 183, Springer, Berlin, Heidelberg (1971), DOI: 10.1007/BFb0060406.

P. W. Hemker, A Numerical Study to Stiff Two-Point Boundary Problems, Mathematisch Centrum, Amsterdam, ix + 178 pages (1977).

M. K. Kadalbajoo and K. K. Sharma, A numerical method on finite difference for boundary value problems for singularly perturbed delay differential equations, Applied Mathematics and Computation 197 (2008), 692 – 707, DOI: 10.1016/j.amc.2007.08.089.

A. Kaushik, Nonstandard perturbation approximation and travelling wave solutions of nonlinear reaction diffusion equations, Numerical Methods for Partial Differential Equations 24(1) (2007), 217 – 238, DOI: 10.1002/num.20244.

A. Kaushik, Singular perturbation analysis of bistable differential equation arising in the nerve pulse propagation, Nonlinear Analysis: Real World Applications 9(5) (2008), 2106 – 2127, DOI: 10.1016/j.nonrwa.2007.06.014.

C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. V. small shifts with layer behavior, SIAM Journal of Applied Mathematics 54(1) (1994), 249 – 272, DOI: 10.1137/S0036139992228120.

C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations, SIAM Journal of Applied Mathematics 42(3) (1982), 502 – 531, DOI: 10.1137/0142036.

J. J. H. Miller, E. O’Riordan and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific Publishing Ltd. (2012), DOI: 10.1142/8410.

R. E. O’Malley, Introduction to Singular Perturbations, 1st edition, Academic Press, New York, 214 pages (1974).

R. O. O’Malley, Singular Perturbation Methods for Ordinary Differential Equations, Applied Mathematical Sciences series 89, Springer-Verlag, viii + 225, Berlin (1991), DOI: 10.1002/zamm.19950750121.

K. Phaneendra, Y. N. Reddy and G. B. S. L. Soujanya, A seventh order numerical method for singular perturbed differential-difference equations with negative shift, Nonlinear Analysis: Modelling and Control 16(2) (2011), 206 – 219, DOI: 10.15388/NA.16.2.14106.

H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics (SSCM, Vol. 24), (1996), DOI: 10.1007/978-3-662-03206-0.

M. Sharma, A. Kaushik and C. Li, Analytic approximation to delayed convection dominated systems through transforms, Journal of Mathematical Chemistry 52 (2014), 2459 – 2474, DOI: 10.1007/s10910-014-0394-1.

G. B. S. L. Soujanya and Y. N. Reddy, Computational method for singularly perturbed delay differential equations with layer or oscillatory behaviour, Applied Mathematics & Information Sciences 10 (2016), 527 – 536, DOI: 10.18576/amis/100214.

R. B. Stein, Some models of neuronal variability, Biophysical Journal 7(1) (1967), 37 – 68, DOI: 10.1016/S0006-3495(67)86574-3.

D. K. Swamy, K. Phaneendra and Y. N. Reddy, Accurate numerical method for singularly perturbed differential-difference equations with mixed shifts, Khayyam Journal of Mathematics 4(2) (2018), 110 – 122, DOI: 10.22034/kjm.2018.57949.

D. K. Swamy, K. Phaneendra, A. B. Babu and Y. N. Reddy, Computational method for singularly perturbed delay differential equations with twin layers or oscillatory behaviour, Ain Shams Engineering Journal 6(1) (2015), 391 – 398, DOI: 10.1016/j.asej.2014.10.004.

R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ (1962), DOI: 10.1007/978-3-642-05156-2.

Downloads

Published

09-05-2023
CITATION

How to Cite

Ragula, K., & Soujanya, G. (2023). Numerical Study of Layer Behaviour Differential-Difference Equations With Small Delay Arising in the Nerve Pulse Propagation. Communications in Mathematics and Applications, 14(1), 385–396. https://doi.org/10.26713/cma.v14i1.1970

Issue

Section

Research Article