Vorticity Gramian of Compact Riemannian Manifolds

Authors

DOI:

https://doi.org/10.26713/cma.v13i2.1719

Keywords:

Manifold, Curl, Metric tensor flow, Hodge star operator, Helmholtz decomposition

Abstract

The vorticity of a vector field on 3-dimensional Euclidean space is usually given by the curl of the vector field. In this paper, we extend this concept to n-dimensional compact and oriented Riemannian manifold. We analyse many properties of this operation. We prove that a vector field on a compact Riemannian manifold admits a unique Helmholtz decomposition and establish that every smooth vector field on an open neighbourhood of a compact Riemannian manifold admits a Stokes’ type identity.

Downloads

Download data is not yet available.

References

I. Agricla and T. Friedrich, Global Analysis - Differential Forms in Analysis, Geometry and Physics, Graduate Studies in Mathematics - Volume 52, American Mathematical Society, (2002), URL: https://bookstore.ams.org/gsm-52.

M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry I, Mathematical Proceedings of the Cambridge Philosophical Society 77(1) (1975), 43 – 69, DOI: 10.1017/S0305004100049410.

C. Bär, Elementary Differential Geometry, Cambridge University Press, United Kingdom (2010), DOI: 10.1017/CBO9780511844843.

C. Bär, The curl operator on odd-dimensional manifolds, Journal of Mathematical Physics 60 (2019), 031501, DOI: 10.1063/1.5082528.

M. Bauer, B. Kolev and S.C. Preston, Geometric investigations of a vorticity model equation, Journal of Differential Equations 260(1) (2016), 478 – 516, DOI: 10.1016/j.jde.2015.09.030.

V. Boonpogkrong, T.S. Chew and P.Y. Lee, On the divergence theorem on manifolds, Journal of Mathematical Analysis and Applications 397 (2013), 182 – 190, DOI: 10.1016/j.jmaa.2012.07.042.

P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Modern Birkhäuser Classics series, Birkhäuser (1992), URL: https://link.springer.com/book/10.1007/978-0-8176-4992-0.

O. Calin and D.C. Chang, Geometric Mechanics on Riemannian Manifolds: Applications to Partial Differential Equations, Birkhäuster, Boston — Basel — Berlin (2005), URL: https://link.springer.com/book/10.1007/b138771.

J. Cantarella, D. DeTurch, H. Gluck and M. Teytel, The spectrum of the curl operator on spherically symmetric domains, Physics of Plasmas 7 (2000), 2766, DOI: 10.1063/1.874127.

I. Chavel, B. Randol and J. Dodziuk (editors), Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics Book series, Vol. 115, pages 1 – 364, Academic Press Inc., London (1984), DOI: 10.1016/s0079-8169(08)x6051-9.

S. Deshmukh, P. Peska and N.B. Turki, Geodesic vector fields on a Riemannian manifold, Mathematics 8 (2020), 137, DOI: 10.3390/math8010137.

J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation, Communications on Pure and Applied Analysis 11(4) (2012), 1407 – 1419, DOI: 10.3934/cpaa.2012.11.1407.

T. Frankel, Homology and flows on manifolds, Annals of Mathematics 65(2) (1957), 330 – 339, URL: https://www.jstor.org/stable/1969965.

A. Grigor’yam, Heat Kernels and Analysis on Manifolds, Studies in Advance Mathematics, Vol. 47, American Mathematical Society (2009), DOI: 10.1090/amsip/047.

B. Gustafsson, Vortex motion and geometric function theory: the role of connections, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377 (2019), 20180341, DOI: 10.1098/rsta.2018.0341.

R. Ignat and R.L. Jerrard, Interaction energy between vortices of vector fields on Riemannian surfaces, Comptes Rendus Mathematique 355(5) (2017), 515 – 521, DOI: 10.1016/j.crma.2017.04.004.

J. Jost, Riemannian Geometry and Geometric Analysis, 5th edition, Springer-Verlag, Berlin — Heidelberg, Germany (2008), DOI: 10.1007/978-3-540-77341-2.

S.C. Kim, Vortex motion on Riemannian surfaces, Journal of Korean Physical Society 59(1) (2011), 47 – 54, DOI: 10.3938/jkps.59.47.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics series, Springer, New York (2003), URL: https://link.springer.com/book/10.1007/978-1-4419-9982-5.

D. Müller, W.P.F. de Medeiros, R.R. de Lima, V.C. de Andrade, The divergence and curl in arbitrary basis, Revita Brasileira de Ensino de Fisica 41(2) (2019), 1 – 7, DOI: 10.1590/1806-9126-RBEF-2018-0082.

L. Omenyi and U. Uchenna, Global analysis on Riemannian manifold, The Australian Journal of Mathematical Analysis and Applications 16(2) (2019), Article 11, 1 – 17, URL: https://ajmaa.org/searchroot/files/pdf/v16n2/v16i2p11.pdf.

H.C. Pak, Motion of vortex filaments in 3-manifolds, Bulletin of the Korean Mathematical Society 42(1) (2005), 75 – 85, DOI: 10.4134/BKMS.2005.42.1.075.

L. Peng and L. Yang, The curl in seven dimensional space and its application, Approximation Theory and Its Applications 15 (1999), 66 – 80

I. Pérez-García, Exact solutions of the vorticity equation on the sphere as a manifold, Atmosfera 28(3) (2015), 179 – 190, DOI: 10.20937/ATM.2015.28.03.03.

H.B. da Veiga and L.C. Berselli, Navier-Stokes equation: Green matrices, vorticity direction and regularity up to the boundary, Journal of Differential Equations 246 (2009), 597 – 628, DOI: 10.1016/j.jde.2008.02.043.

X.L. Xie and W.W. Mar, 2D vorticity and stream function solutions based on curvilinear coordinates, in: Proceedings Third International Conference on Experimental Mechanics, Vol. 4537 (2002), DOI: 10.1117/12.468772.

Downloads

Published

17-08-2022
CITATION

How to Cite

Omenyi, L., Nwaeze, E., Oyakhire, F., & Ekhator, M. (2022). Vorticity Gramian of Compact Riemannian Manifolds. Communications in Mathematics and Applications, 13(2), 539–552. https://doi.org/10.26713/cma.v13i2.1719

Issue

Section

Research Article