Fuzzy Model on Online Treatment Analysis for COVID-19


  • E. Anita Dolorosa P.G. & Research Department of Mathematics, Loyola College, Chennai 600 034, India https://orcid.org/0000-0002-7922-1804
  • T. Pathinathan P.G. & Research Department of Mathematics, Loyola College, Chennai 600 034, India




Fuzzy number, Reverse order fuzzy number, COVID-19, Infections


The purpose of this paper is to introduce a fuzzy model for patients suffering from COVID-19. We have defined primary, normal and abnormal infections based on the symptoms of the patients. Fuzzy numbers and Reverse order fuzzy numbers have been used to identify the stages of each patient. These models may help the doctors for online treatment of patients.


Download data is not yet available.


S. Banerjee and T. K. Roy, Arithmetic operations on generalized trapezoidal fuzzy number and its applications, Turkish Journal of Fuzzy Systems 3(1) (2012), 16 – 44.

S. Bekheet, A. Mohammed and H. A. Hefny, Enhanced fuzzy multi-criteria decision making model with a proposed polygon fuzzy number, International Journal of Advanced Computer Science and Applications 5(5) (2014), 118 – 121 DOI: 10.14569/IJACSA.2014.050517.

S. K. Biswas, J. K. Ghosh, S. Sarkar and U. Ghosh, COVID-19 pandemic in India: A mathematical model study, Nonlinear Dynamics 102 (2020), 537 – 553, DOI: 10.1007/s11071-020-05958-z.

R. Din, A. R. Seadawy, K. Shah, A. Ullah amd D. Baleanu, Study of global dynamics of COVID-19 via a new mathematical model, Results in Physics 19 (2020), 103468, DOI: 10.1016/j.rinp.2020.103468.

E. A. Dolorosa and T. Pathinathan, Dual (alpha)-cuts and applications of reverse order fuzzy numbers, Journal of Huazhong University of Science and Technology 50(March) (2021), 12 pages, URL: http://hustjournal.com/vol502021mar/.

D. Dubois and H. Prade, Operations on fuzzy numbers, International Journal of Systems Science 9(6) (1978), 613 – 626, DOI: 10.1080/00207727808941724.

G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall Inc., Upper Saddle River, NJ (1995), URL: https://www.b-farhadinia.ir/bfarhadiadmin/file/stdfile/Klir.pdf.

T. Pathinathan and K. Ponnivalavan, Reverse order triangular, trapezoidal and pentagonal fuzzy numbers, Annals of Pure and Applied Mathematics 9 (2015), 107 – 117, URL: http://www.researchmathsci.org/apamart/apam-v9n1-12.pdf.

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey (1970), URL: https://press.princeton.edu/books/paperback/9780691015866/convex-analysis.

C. Sohrabi, Z. Alsafi, N. O’Neill, M. Khan, A. Kerwan, A. Al-Jabir, C. Iosifidis and R. Agha, World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19), International Journal of Surgery 76 (2020), 71 – 76, DOI: 10.1016/j.ijsu.2020.02.034.

L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

A. Zeb, E. Alzahrani, V. S. Erturk and G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-19) Containing isolation class, BioMed Research International 2020 (2020), Article ID 3452402, 7 pages, DOI: 10.1155/2020/3452402.




How to Cite

Dolorosa, E. A. ., & Pathinathan, T. . (2021). Fuzzy Model on Online Treatment Analysis for COVID-19. Communications in Mathematics and Applications, 12(4), 977–985. https://doi.org/10.26713/cma.v12i4.1641



Research Article