Optimal System and Exact Solutions of Monge-Ampere Equation


  • Tooba Feroze Department of Mathematics, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, Pakistan https://orcid.org/0000-0002-2456-6418
  • Mohsin Umair Roots International Schools and Colleges, Kohistan Campus, Wah Cantt., Pakistan




Lie symmetries, adjoint representations, commutator relation, conjugacy classes, invariant equations


A solution that remains unchanged when transformed under Lie group of point symmetries of the differential equation is an invariant solution of the differential equation. Optimal system of Lie group of point symmetry generators provide all possible invariant solutions of differential equation. Here, using optimal system of Lie point symmetry generators group invariant solutions are obtained. Using these solutions, exact solutions of non-homogeneous Monge-Ampere equation have been presented here.


Download data is not yet available.


N. I. Akhiezer and I. G. Petrovskii, S. N. Bernshtein’s contribution to the theory of partial differential equations, Russian Mathematical Surveys 16(2) (1961), 1 – 15, DOI: 10.1070/RM1961v016n02ABEH004101.

A. M. Ampère, Mémoire contenant l’application de la théorie exposée dans le XVII(^circ) cahier du Journal de l’École Polytechnique, à l’intégration des équations différentielles partielles du premier et du second ordre, Journal de l’École Polytechnique 11(18) (1820), 1 – 188, URL: http://www.ampere.cnrs.fr/bibliographies/pdf/1820-P248.pdf.

D. Baleanu, M. Inc, A. Yusuf and A. I. Aliyu, Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation, Open Physics 16 (2018), 364 – 370, DOI: 10.1515/phys-2018-0049.

J. Beckers, J. Patera and P. Winternitz, Subalgebras of real three and four dimensional algebras, Journal of Mathematical Physics 18 (1977), 72, DOI: 10.1063/1.523441.

M. L. Gandarias, M. Torrisi and A. Valenti, Symmetry classification and optimal systems of a non-Linear wave equation, International Journal of Non-Linear Mechanics 39 (2004), 389 – 398, DOI: 10.1016/S0020-7462(02)00195-6.

E. Hizel, N. C. Turgay and B. Guldogan, Symmetry analysis of three dimensional time independent Schrodinger-Newton equation, Applied Mathematical Sciences 2 (2008), 341 – 351, URL: http://www.m-hikari.com/ams/ams-password-2008/ams-password5-8-2008/hizelAMS5-8-2008.pdf.

X.-R. Hu and Y. Chen, Two dimensional symmetry reduction of (2+1)-dimensional nonlinear Klien-Gordan Equation, Applied Mathematics and Computation 215 (2009), 1141 – 1145, DOI: 10.1016/j.amc.2009.06.049.

B. Jamil, T. Feroze and M. Safdar, Optimal systems and their group-invariant solutions to geodesic equations, International Journal of Geometric Methods in Modern Physics 16(09) (2019), 1950135, DOI: 10.1142/S0219887819501354.

C. M. Khalique and A. Biswas, Analysis of nonlinear Klein-Gordon equation using Lie symmetry analysis, Applied Mathematics Letter 23 (2010), 1397 – 1400, DOI: 10.1016/j.aml.2010.07.006.

F. A. Kiraz, A note on one dimensional optimal system of generalized Boussineq equation, Applied Mathematical Sciences 2 (2008), 1541 – 1548, URL: http://www.m-hikari.com/ams/ams-password-2008/ams-password29-32-2008/kirazAMS29-32-2008.pdf.

H. Kötz, A technique to classify the similarity solutions of nonlinear partial (integro-)differential equations. I. Optimal systems of solvable Lie subalgebras, Zeitschrift für Naturforschung A 47a (1992), 1161 – 1173, DOI: 10.1515/zna-1992-1114.

H. Lewy, On differential geometry in the large. I. Minkowski’s problem, Transactions of the American Mathematical Society 43 (1938), 258 – 270, DOI: 10.1090/S0002-9947-1938-1501942-3.

H. Liu, J. Li and L. Liu, Lie symmetry analysis, optimal system and exact solutions to the fifth-order KdV types equation, Mathematical Analysis and Application 368 (2010), 551 – 558, DOI: 10.1016/j.jmaa.2010.03.026.

H. Minkowski, Allgemeine Lehrsätze über die convexen Polyeder, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1897 (1897), 198 – 220.

H. Minkowski, Volumen und Oberfläche, Mathematische Annalen 57 (1903), 447 – 495, DOI: 10.1007/BF01445180.

G. Monge, Mémoire sur le calcul intégral des équations aux différences partielles, Mémoires de l’Académie des Sciences Paris, France: Imprimerie Royale (1784), 118 – 192.

S. T. Niel and W. X.-Jia, Handbook of Geometric Analysis, 1, Higher Education Press, Somerville, USA (2008).

B. F. Nteumagne and R. J. Moitsheki, Optimal systems and group invariant solution for a model arising in financial mathematics, Mathematical Modelling and Analysis 14(4) (2009), 495 – 502, DOI: 10.3846/1392-6292.2009.14.495-502.

P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Text in Mathematics, Springer-Verlag, New York (1993).

L. V. Ovsyannikov, Group Analysis of Differential Equations, Nauka, Moscow (1978), [in Russian, English translation New York (1982)].

M. Ruggieri and M. P. Speciale, Optimal system and new approximate solutions of a generalized Ames’s equation, Symmetry 11 (2019), 1230, DOI: 10.3390/sym11101230.

M. Umair and T. Feroze, Exact solutions of Zabolotskaya-Khokhlov equation using optimal system, International Journal of Geometric Methods in Modern Physics 15 (2018), 1850111, DOI: 10.1142/S0219887818501116.

M. Yourdkhany, M. Nadjafikhah and M. Toomanian, Preliminary group classification and some exact solutions of 2-Hessian equation, Bulletin of the Iranian Mathematical Society 47 (2021), 977 – 994, DOI: 10.1007/s41980-020-00424-3.




How to Cite

Feroze, T., & Umair, M. (2021). Optimal System and Exact Solutions of Monge-Ampere Equation. Communications in Mathematics and Applications, 12(4), 825–833. https://doi.org/10.26713/cma.v12i4.1516



Research Article