The Domination Number of a Graph \(P_k ((k_1, k_2), (k_3, k_4))\)

Monthiya Ruangnai, Sayan Panma

Abstract


For each \(k, k_1, k_2, k_3, k_4 \in \mathbb{N}\), we will denote by \(P_k \big((k_1, k_2), (k_3, k_4)\big)\) a tree of \(k+k_1+k_2+k_3+k_4+1\) vertices with the degree sequence \((1,1,1,1,2,2,2,\dots,2,3,3)\). Let \(\alpha_{k_1}, \beta_{k_2}, \sigma_{k_3}\), and \(\delta_{k_4}\) be all four endpoints of the graph. Let the distance between both vertices of degree 3 be equal to \(k\). A subset \(S\) of vertices of a graph \(P_k \big((k_1, k_2), (k_3, k_4)\big)\) is a dominating set of \(P_k \big((k_1, k_2), (k_3, k_4)\big)\) if every vertex in \(V\big(P_k \big((k_1, k_2), (k_3, k_4)\big)\big)-S\) is adjacent to some vertex in \(S\). We investigate the dominating set of minimum cardinality of a graph \(P_k \big((k_1, k_2), (k_3, k_4)\big)\) to obtain the domination number of this graph. Finally, we determine an upper bound on the domination number of a graph \(P_k \big((k_1, k_2), (k_3, k_4)\big)\).


Keywords


Domination number; Tree; A dominating set of a graph; The domination number of a graph; The domination number of a tree

Full Text:

PDF

References


S. Alikhani, Y. H. Peng and K. A. M. Atan, On the domination number of some graphs, Int. Math. Forum 3(38) (2008), 1879 – 1884.

M. M. Bacolod and M. P. Baldado Jr., Domination number of the acquaint vertex gluing of graphs, Appl. Math. Sci. 8(161) (2014), 8029 – 8036.

G. Chartrand and P. Zhang, Introduction to Graph Theory, International edition, McGraw-Hill, 361 – 368 (2005).

T. T. Chelvam and G. Kalaimurugan, Bounds for domination parameters in Cayley graphs on dihedral group, Open J. Discrete Math. 2(1) (2012), 5 – 10, DOI: 10.4236/ojdm.2012.21002.

A. Frendrup, M. A. Henning, B. Randerath and P. D. Vestergaard, An upper bound on the domination number of a graph with minimum degree, Discrete Mathematics 309(2) (2009), 639 – 646, DOI: 10.1016/j.disc.2007.12.080.

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Dominations in Graphs, Marcel Dekker, New York (1998).

J. Huang and J. M. Xu, Domination and total domination contraction numbers of graphs, Ars Combinatoria 94 (2010), 431 – 443, URL: http://staff.ustc.edu.cn/~xujm/201004.pdf.

A. V. Kostochka and C. Stocker, A new bound on the domination number of connected cubic graph, Siberian Elect. Math. Reports 6 (2009), 465 – 504, URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.224.9130.

A. V. Kostochka and B. Y. Stodolsky, An upper bound on the domination number of n-vertex connected cubic graphs, Discrete Math. 309 (2009), 1142 – 1162, DOI: 10.1016/j.disc.2007.12.009.

N. Murugesan and D. S. Nair, The domination and independence of some cubic bipartite graphs, Int. J. Contemp. Math. Sciences 6 (2011), 611 – 618.

N. Nupo and S. Panma, Domination in Cayley digraphs of rectangular groups, in Proceedings of International Conference on Science & Technology, Bangkok (2014).

R. Wilson, Introduction to Graph Theory, 4th edition, Addison Wesley Longman Limited, England (1996).




DOI: http://dx.doi.org/10.26713%2Fcma.v10i4.1248

Refbacks

  • There are currently no refbacks.


eISSN 0975-8607; pISSN 0976-5905