Some Fixed Point Theorems for Expansive Mappings in Cone Pentagonal Metric Spaces
Abstract
In this paper, we prove some xed point theorems for mappings satisfying expansive conditions in non-normal cone pentagonal metric spaces. Our results extend and improve the recent results announced by Patil and Salunke [Fixed point theorems for Expansion mappings in Cone rectangular metric spaces, Gen. Math. Notes, 29(1), (2015), 30-39], Shatanawi and Awawdeh, [Some xed and coincidence point theorems for Expansive maps in Cone metric spaces, Fixed Point Theory and Applications, 1(2012), 1-10], Huang, Zhu and Wen, [Fixed point theorems for Expanding mappings in Cone metric spaces, Math. Reports 14(64), 2(2012), 141-148], Kadelburg, Murthy and Radenovic, [Common xed points for Expansive mappings in Cone metric spaces, Int. J. Math. Anal, 5(27), (2011), 1309-1319], Aage and Salunke, [Some xed point theorems for Expansion onto mappings on Cone metric spaces, Acta Mathematica Sinica, 27(6), (2011), 1101-1106], Kumar and Garg, [Common xed points for Expansion mappings Theorems in metric spaces, Int. J. Contemp. Math. Sciences, 4(36), (2009), 1749-1758], and many others in the literature.
Keywords
Full Text:
PDFReferences
M. Abbas and G. Jungck, Common xed point results for non commuting mappings without continuity in cone metric spaces, J. Math. Anal. and Appl., 341 (2008), 416 - 420.
A. Auwalu, Kannan fixed point theorem in a Cone pentagonal metric spaces, J. Math. Comp. Sci., in press, 2016.
A. Azam, M. Arshad, and I. Beg, Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math., 3 (2009), no. 2, 236 - 241.
M. Garg and S. Agarwal, Banach Contraction Principle on Cone Pentagonal Metric Space, J. Adv. Stud. Topol., 3 (2012), no. 1, 12 - 18.
L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. and Appl., 332 (2007), no. 2, 1468 - 1476.
S. Rezapour and R. Hamlbarani, Some notes on paper cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. and Appl., 347 (2008), no. 2, 719 - 724.
S. Z. Wang, B. Y. Li, Z. M. Gao and K. Iseki, Some fixed point theorems for expansion mappings, Math. Jpn., 29 (1984), 631 - 636.
P. Z. Daer and H. Kaneko, On expansive mappings, Math. Jpn., 37 (1992), 733 - 735.
C T. Aage and J N. Salunke, Some fixed point theorems for Expansion onto mappings on Cone metric spaces, Acta Mathematica Sinica, 27(6), (2011), 1101 - 1106.
W. Shatanawi and F. Awawdeh, Some fixed and coincidence point theorems for Expansive maps in Cone metric spaces, Fixed Point Theory and Applications, 1(2012), 1 - 10.
Z. Kadelburg, P.P. Murthy and S. Radenovic, Common fixed points for Expansive mappings in Cone metric spaces, Int. J. Math. Anal, 5(27), (2011), 1309 - 1319.
X. Huang, Ch. Zhu and X. Wen, Fixed point theorems for Expanding mappings in Cone metric spaces, Math. Reports 14(64), 2(2012), 141 - 148.
S.R. Patil1 and J.N. Salunke Fixed point theorems for Expansion mappings in Cone rectangular metric spaces, Gen. Math. Notes, 29(1), (2015), 30 - 39.
S. Kumar and S.K. Garg, Common fixed points for Expansion mappings Theorems in metric spaces, Int. J. Contemp. Math. Sciences, 4(36), (2009), 1749 - 1758.
G. Jungck, S. Radenovic, S. Radojevic, and V. Rakocevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory and Applications, 2009. http://dx.doi.org/10.1155/2009/643840
DOI: http://dx.doi.org/10.26713%2Fjims.v9i1.581
eISSN 0975-5748; pISSN 0974-875X
