Complementary Eccentric Uniform Labeling Graphs

K. K. Usha, K. A. Germina


Given a graph \(G=(V,E)\), a set \(M\subset V\) is called Complementary Eccentric Uniform (CEU), if the \(M\)-eccentricity labeling \(e_M(u)=\max\{d(u,v):v\in M\}\) is identical for all \(u\in V-M\). The least cardinality of a CEU set is called the CEU number of the graph \(G\). In this paper we initiate a study on CEU labelled graphs and obtain bounds for certain graphs.


CEU set; CEU number

Full Text:



C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam (1973).

F. Buckley and F. Harary, Distance in Graphs, Addison Wesley Publishing Company (1990).

G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill International Edition, Singapore (2005).

C. Gavoille, D. Peleg, S. Perennes and R. Raz, Distance labeling in graphs, Journal of Algorithms 53 (2004), 85–112.

F. Harary, Graph Theory, Addison-Wesley Publishing Company, Massachusetts (1969).

K.R. Parthasarathy and R. Nandakumar, Unique eccentric point graphs, Discrete Mathematics 46 (1983), 69–74.

L. Lesniak, Eccentric sequences in graphs, Period. Math. Hung. 6 (1975), 287–293.

F.W. Takes and W.A. Kosters, Computing the eccentricity distribution of large graphs, Algorithms 6 (2013), 100–118.


eISSN 0975-5748; pISSN 0974-875X