Enhanced Survey Estimation Using Calibration under Scrambled Response and Measurement Error

Authors

  • Ridhi Agarwal AcadAlly, Avalon Labs Pvt. Ltd., A-91, First Floor, Nagpal Towers, Okhla Phase II, New Delhi 110020, India https://orcid.org/0009-0000-8305-2399
  • Yash Prakash AcadAlly, Avalon Labs Pvt. Ltd., A-91, First Floor, Nagpal Towers, Okhla Phase II, New Delhi 110020, India https://orcid.org/0009-0007-9173-4171

DOI:

https://doi.org/10.26713/jims.v17i4.3424

Abstract

This study addresses the challenges of collecting accurate data on sensitive issues by applying various Scrambled Response Techniques combined with various calibration estimators under measurement error. A simulation study using real data evaluates the performance of the proposed estimators both with and without measurement error. Results show that the proposed method consistently outperforms traditional Scrambled Response Technique, demonstrating greater efficiency and reliability in handling sensitive survey data.

Downloads

Download data is not yet available.

References

W. E. Deming, Some Theory of Sampling, John Wiley and Sons, New York, xvii + 602 pages (1953).

J.-C. Deville and C.-E. Särndal, Calibration estimators in survey sampling, Journal of the American Statistical Association 87(418) (1992), 376 – 382, DOI: 10.1080/01621459.1992.10475217.

G. Diana and P. F. Perri, A class of estimators for quantitative sensitive data, Statistical Papers 52(3) (2011), 633 – 650, DOI: 10.1007/s00362-009-0273-1.

G. Diana and P. F. Perri, New scrambled response models for estimating the mean of a sensitive quantitative character, Journal of Applied Statistics 37(11) (2010), 1875 – 1890, DOI: 10.1080/02664760903186031.

B. H. Eichhorn and L. S. Hayre, Scrambled randomized response method for obtaining sensitive quantitative data, Journal of Statistical Planning and Inference 7(4) (1983), 307 – 316, DOI: 10.1016/0378-3758(83)90002-2.

T. G. Gregoire and C. Salas, Ratio estimation with measurement error in the auxiliary variate, Biometrics 65(2) (2009), 590 – 598, DOI: 10.1111/J.1541-0420.2008.01110.X.

D. G. Horvitz and D. J. Thompson, A generalization of sampling without replacement from a finite universe, Journal of the American Statistical Association 47(260) (1952), 663 – 685, DOI: 10.2307/2280784.

P. C. Mahalanobis, Recent experiments in statistical sampling in the Indian Statistical Institute, Sankhya: The Indian Journal of Statistics 20(3/4) (1958), 329 – 398, URL: https://www.jstor.org/stable/25048402.

P. F. Perri and G. Diana, Scrambled response models based on auxiliary variables, in: Advances in Theoretical and Applied Statistics, N. Torelli, F. Pesarin and A. Bar-Hen (editors), Springer-Verlag, Berlin, pp. 281 – 291 (2013), DOI: 10.1007/978-3-642-35588-2_26.

K. H. Pollock and Y. Bek, A comparison of three randomized response models for quantitative data, Journal of the American Statistical Association 71(336) (1976), 884 – 886, DOI: 10.1080/01621459.1976.10480963.

K. Priyanka and P. Trisandhya, Calibration estimator in presence of measurement errors on successive occasions, International Journal of Mathematics and Statistics 24(2) (2023), 1 – 14.

K. Priyanka, P. Trisandhya and R. Mittal, Dealing sensitive characters on successive occasions through a general class of estimators using scrambled response techniques, Metron 76(2) (2018), 203 – 230, DOI: 10.1007/s40300-017-0131-1.

D. Raj, Sampling Theory, McGraw-Hill, New York, 302 pages (1968).

A. Saha, A simple randomized response technique in complex surveys, Metron 65(1) (2007), 59 – 66, URL: https://www.dss.uniroma1.it/RePec/mtn/articoli/2007-1-6.pdf.

C.-E. Särndal, B. Swensson and J. Wretman, Model Assisted Survey Sampling, Springer-Verlag, New York, xv + 695 pages (1992), URL: https://link.springer.com/book/9780387406206.

H. P. Singh and G. K. Vishwakarma, A general class of estimators in successive sampling, Metron 65(2) (2020), 201 – 227, URL: https://www.dss.uniroma1.it/RePec/mtn/articoli/2007-2-4.pdf.

P. V. Sukhatme, B. V. Sukhatme, S. Sukhatme and S. Ashok, Sampling Theory of Surveys with Applications, Indian Society of Agricultural Statistics, New Delhi, xiii + 530 pages (1984).

S. L. Warner, Randomized response: A survey technique for eliminating evasive answer bias, Journal of the American Statistical Association 60(309) (1965), 63 – 69, DOI: 10.2307/2283137.

Downloads

Published

2025-12-30
CITATION

How to Cite

Agarwal, R., & Prakash, Y. (2025). Enhanced Survey Estimation Using Calibration under Scrambled Response and Measurement Error. Journal of Informatics and Mathematical Sciences, 17(4), 351–364. https://doi.org/10.26713/jims.v17i4.3424

Issue

Section

Research Article