Reconstruction of a Discontinuous Refractive Index Using Modified Transmission Eigenvalues
DOI:
https://doi.org/10.26713/jims.v17i4.3358Abstract
We consider the inverse problem of reconstructing a spherically symmetric and discontinuous refractive index using modified interior transmission eigenvalues. We first investigate the asymptotic behavior of the characteristic function. Then we establish the uniqueness of a discontinuous refractive index from modified transmission eigenvalues without assuming that the contrast has a fixed sign. Finally, numerical examples are presented to verify the uniqueness results.
Downloads
References
T. Aktosun, D. Gintides and V. G. Papanicolaou, The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation, Inverse Problems 27 (2011), 115004, DOI: 10.1088/0266-5611/27/11/115004.
N. Bondarenko and S. Buterin, On a local solvability and stability of the inverse transmission eigenvalue problem, Inverse Problems 33(2017), 115010, DOI: 10.1088/1361-6420/aa8cb5.
F. Cakoni, D. Colton and D. Gintides, The interior transmission eigenvalue problem, SIAM Journal on Mathematical Analysis 42(6) (2010), 2912 – 2921, DOI: 10.1137/100793542.
F. Cakoni, D. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, Comptes Rendus. Mathématique 348(7-8) (2010), 379 – 383, DOI: 10.1016/j.crma.2010.02.003.
F. Cakoni, D. Colton and H. Haddar, The interior transmission problem for regions with cavities, SIAM Journal on Mathematical Analysis 42(1) (2010), 145 – 162, DOI: 10.1137/090754637.
F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM Journal on Mathematical Analysis 42(1) (2010), 237 – 255, DOI: 10.1137/090769338.
F. Cakoni and H. Haddar, Transmission Eigenvalues in Inverse Scattering Theory, Gunther Uhlmann, Inside Out II, 60, MSRI Publications, pp. 527 – 578 (2012), URL: https://inria.hal.science/hal-00741615v1/document.
L.-H. Chen, An uniqueness result with some density theorems with interior transmission eigenvalues, Applicable Analysis 94 (2015), 1527 – 1544, DOI: 10.1080/00036811.2014.936403.
S. Cogar, D. Colton and Y.-J. Leung, The inverse spectral problem for transmission eigenvalues, Inverse Problems 33 (2017), 055015, DOI: 10.1088/1361-6420/aa66d2.
S. Cogar, D. Colton, S. Meng and P. Monk, Modified transmission eigenvalues in inverse scattering theory, Inverse Problems 33 (2017), 125002, DOI: 10.1088/1361-6420/aa9418.
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition, Springer, New York, xvii + 518 pages (2019), DOI: 10.1007/978-3-030-30351-8.
D. Colton and R. Kress, The construction of solutions to acoustic scattering problems in a spherically stratified medium. II, The Quarterly Journal of Mechanics and Applied Mathematics 32(1) (1979), 53 – 62, DOI: 10.1093/qjmam/32.1.53.
D. Colton, Y.-J. Leung and S. X. Meng, Distribution of complex transmission eigenvalues for spherically stratified media, Inverse Problems 31 (2015), 035006, DOI: 10.1088/0266-5611/31/3/035006.
D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, The Quarterly Journal of Mechanics and Applied Mathematics 41(1) (1988), 97 – 125, DOI: 10.1093/qjmam/41.1.97.
H. Diao, X. Cao and H. Liu, On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications, Communications in Partial Differential Equations 46(4) (2021), 630 – 679, DOI: 10.1080/03605302.2020.1857397.
F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum, Transactions of the American Mathematical Society 352(6) (2000), 2765 – 2787.
D. Gintides and N. Pallikarakis, A computational method for the inverse transmission eigenvalue problem, Inverse Problems 29 (2013), 104010, DOI: 10.1088/0266-5611/29/10/104010.
D. Gintides and N. Pallikarakis, The inverse transmission eigenvalue problem for a discontinuous refractive index, Inverse Problems 33 (2017), 055006, DOI: 10.1088/1361-6420/aa5bf0.
I. Harris, Non-Destructive Testing of Anisotropic Materials, Ph.D. Thesis, University of Delaware, Delaware, USA (2015).
I. Harris, Analysis of two transmission eigenvalue problems with a coated boundary condition, Applicable Analysis 100(9) (2021), 1996 – 2019, DOI: 10.1080/00036811.2019.1672869.
I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids, Inverse Problems 30 (2014), 035016, DOI: 10.1088/0266-5611/30/3/035016.
I. Harris and A. Kleefeld, The inverse scattering problem for a conductive boundary condition and transmission eigenvalues, Applicable Analysis 99(3) (2020), 508 – 529, DOI: 10.1080/00036811.2018.1504028.
A. Kleefeld, A numerical method to compute interior transmission eigenvalues, Inverse Problems 29 (2013), 104012, DOI: 10.1088/0266-5611/29/10/104012.
A. Kleefeld and L. Pieronek, The method of fundamental solutions for computing acoustic interior transmission eigenvalues, Inverse Problems 34 (2018), 035007, DOI: 10.1088/1361-6420/aaa72d.
J. R. Mclaughlin and P. L. Polyakov, On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, Journal of Differential Equations 107(2) (1994), 351 – 382, DOI: 10.1006/jdeq.1994.1017.
L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM Journal on Mathematical Analysis 40(2) (2008), 738 – 753, URL: 10.1137/070697525.
K. Stratouras, Direct and Inverse Spectral Problems in Scattering Theory, PhD Thesis, National Technical University of Athens, Greece, (2022), URL: 10.12681/eadd/52602. (in Greek)
J. Sun and A. Zhou, Finite Element Methods for Eigenvalue Problems, 1st edition, Chapman and Hall/CRC, New York, 367 pages (2016), DOI: 10.1201/9781315372419.
Y. P. Wang, Inverse problems for discontinuous Sturm-Liouville operators with mixed spectral data, Inverse Problems in Science and Engineering 23(7) (2015), 1180 – 1198, DOI: 10.1080/17415977.2014.981748.
Y. P. Wang and C. T. Shieh, The inverse interior transmission eigenvalue problem with mixed spectral data, Applied Mathematics and Computation 343 (2019), 285 – 298, DOI: 10.1016/j.amc.2018.09.014.
Z. Wei and G. Wei, Unique reconstruction of the potential for the interior transmission eigenvalue problem for spherically stratified media, Inverse Problems 36 (2020), 035017, DOI: 10.1088/1361-6420/ab6e77.
G. Wei and H.-K. Xu, Inverse spectral analysis for the transmission eigenvalue problem, Inverse Problems 29 (2013), 115012, DOI: 10.1088/0266-5611/29/11/115012.
G. Wei and H.-K. Xu, Inverse spectral problem with partial information given on the potential and norming constants, Transactions of the American Mathematical Society 364(6) (2012), 3265 – 3288.
X.-C. Xu, X.-J. Xu and C.-F. Yang, Distribution of transmission eigenvalues and inverse spectral analysis with partial information on the refractive index, Mathematical Methods in the Applied Sciences 39(18) (2016), 5330 – 5342, DOI: 10.1002/mma.3918.
R. M. Young, An Introduction to Non-Harmonic Fourier Series, 2nd edition, Academic Press, San Diego, CA, 234 pages (2001).
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.



