On New Linear Operator Associated with Gaussian Hypergeometric Functions

Firas Ghanim Ahmed, Maslina Darus, Sebastien Gaboury

Abstract


In the present paper, we introduce new classes \(\sum_n^*(\alpha,\beta,k,\rho)\) and \(\sum_n(\alpha,\beta,k,\rho)\) of meromorphic functions dened by means of the linear operator \(L^* (\alpha,\beta) f (z)\) for function in \({\mathbb U}^* =\{z:0 < |z| < 1\}\) and investigate a number of inclusion relationships of these classes. We also derive some interesting properties of these classes.

Keywords


Meromorphic functions; Hadamard product; Linear operator; Functions with positive real part; Integral operator

Full Text:

PDF

References


N. E. Cho and I. H. Kim, Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, Appl. Math. Compu., 187 (1) (2007), 115-121.

J. Dziok and H.M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math. kyungshang, 5 (2) (2002), 115-125.

F. Ghanim and M. Darus, Linear Operators Associated with Subclass of Hypergeometric Meromorphic Uniformly Convex Functions, Acta Univ. Apulensis, Math. Inform., 17 (2009), 49-60.

F. Ghanim and M. Darus, A new class of meromorphically analytic functions with applications to generalized hypergeometric functions, Abstract and Applied Analysis, Online article (2011), http://www.hindawi.com/journals/aaa/2011/159405/.

F. Ghanim and M. Darus, Some results of p-valent meromorphic functions defined by a linear operator, Far East Journal of Mathematical Sciences, 44 (2) (2010), 155-165.

F. Ghanim and M. Darus, Some Properties of Certain Subclass of Meromorphically Multivalent Functions Defined by Liner operator, Journal of Mathematics and Statistics, 6 (1) (2010), 34-41.

J. L. Liu, A linear operator and its applications on meromorphic p-valent functions, Bull. Inst. Math., Acad. Sin., 31 (1) (2003), 23-32.

J. L. Liu and H.M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function , Math. Comput. Modelling, 39 (1) (2004), 21-34.

T. H. MacGregor, Radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14, (1963), 514-520.

K. I. Noor and A. Muhammad, On certain subclasses of meromorphic univalent functions , Bulletin of the Institute of Mathematics, 5 (2010), 83-94.

K. S. Padmanabhan and R. Parvatham, properties of a class of functions with bounded boundary rotation, Ann. Polan. Math., 31(1975), 311-323.

D. Z. Pashkouleva, The starlikeness and spiral-convexity of certain subclasses of analytic functions , in: H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientic publishing Company, Singapore, New Jersey, London and Hong Kong, (1992), 266-273.

B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10(1971), 7{16.

S. Ponnusamy, Differential subordination and Bazilevic functions, Proc. Ind. Acad. Sci., 105, (1995), 169-186.

E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.

R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106, (1989), 145-152.

H. M. Srivastava, S. Gaboury and F. Ghanim, Certain subclasses of meromorphically univalent functions defined by a linear operator associated with the (lambda)-generalized Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct. 26 (4) (2015), 258-272.

H. M. Srivastava, S. Gaboury and F. Ghanim, Some further properties of a linear operator associated with the (lambda)-generalized Hurwitz-Lerch zeta function related to the class of meromorphically univalent functions, Appl. Math. Comput. 259 (2015), 1019-1029.

H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwoord Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.




DOI: http://dx.doi.org/10.26713%2Fjims.v7i3.328

eISSN 0975-5748; pISSN 0974-875X