### On the Area of the Symmetry Orbits of the Einstein-Vlasov-Scalar Field System with Plane and Hyperbolic Symmetry

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

H. Andréasson, Global foliations of matter spacetimes with Gowdy symmetry, Commun. Math. Phys. 206 (1999), 337-366.

H. Andréasson, G. Rein and A.D. Rendall, On the Einstein-Vlasov system with hyperbolic symmetry, Math. Proc. Camb. Phil. Soc. 124 (2003), 529-549.

J. Ehlers, A survey of General Relativity Theory Astrophysics and cosmology, W. Israel (ed.), 1-125, Reidel, Dordrecht, 1973.

A.D. Rendall, Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry, Class. Quantum Grav. 12 (1995), 1517-1533.

J. Smulevici, On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic symmetry, Analysis & PDE 4 (2) (2011), 191-245.

D. Tegankong, N. Noutchegueme and A.D. Rendall, Local existence and continuation criteria for solutions of the Einstein-Vlasov-scalar field system with surface symmetry, Journ. Hyperb. Diff. Eq. 1(4) (2004), 691-724.

D. Tegankong, Global existence and asymptotic behaviour for solutions of the Einstein-Vlasov-scalar field system with surface symmetry, Class. Quantum Grav. 22 (2005), 2381–-2391.

D. Tegankong and A.D. Rendall, On the nature of initial singularities for solutions of the Einstein-Vlasov-scalar field system with surface symmetry, Math. Proc. Camb. Phil. Soc. 141 (2006), 547-562.

M. Weaver, On the area of the symmetry orbits in $T^2$ symmetric spacetimes with Vlasov matter, Class. Quantum Grav. 21 (2004), 1079.

DOI: http://dx.doi.org/10.26713%2Fjims.v5i3.219

eISSN 0975-5748; pISSN 0974-875X