A Dynamic Contact Problem Between Elasto-Viscoplastic Piezoelectric Bodies with Adhesion

Laid Maiza, Tedjani Hadj Ammar, Abdelhamid Rehouma


We consider a dynamic frictionless contact problem between two elasto-viscoplastic piezoelectric bodies with damage. The evolution of the damage is described by an inclusion of parabolic type. The contact is modelled with normal compliance condition. The adhesion of the contact surfaces is considered and is modelled with a surface variable, the bonding field whose evolution is described by a first order differential equation. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of nonlinear evolution equations with monotone operators, a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed-point arguments.


Electro-elasto-viscoplastic materials; Normal compliance; Adhesion; Damage; differential equations; Fixed point

Full Text:



A. Aissaoui and N. Hemici, A frictional contact problem with damage and adhestion for an electro elastic-viscopalastic body, Electronic Journal of Differential Equations 11 (2014), 1 – 19.

A. Azeb Ahmed and S. Boutechebak, Analysis of a dynamic thermo-elastic-viscoplastic contact problem, Electronic Journal of Qualitative Theory of Differential Equations 71 (2013), 1 – 17, DOI: 10.14232/ejqtde.2013.1.71.

A. Bachmar and S. Boutechebak, T. Variational analysis of a dynamic electroviscoelastic problem with friction, Journal of Siberian Federal University. Mathematics & Physics 12 (2019), 68 – 78, http://elib.sfu-kras.ru/handle/2311/109322.

R. C. Batra and J. S. Yang, Saint-Venant’s principle in linear piezoelectricity, Journal of Elasticity 38 (1995), 209 – 218, DOI: 10.1007/BF00042498.

S. Boutechebak and A. A. Ahmed, Analysis of a dynamic contact problem for electro-viscoelastic materials, Milan Journal of Mathematics 86 (2018), 105 – 124, DOI: 10.1007/s00032-018-0282-4.

O. Chau, J. R. Fernandez and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion, Journal of Computational and Applied Mathematics 159 (2003), 431 – 465, DOI: 10.1016/S0377-0427(03)00547-8.

O. Chau, M. Shillor, M. Sofonea and Z. Angew, Dynamic frictionless contact with adhesion, Journal of Applied Mathematics and Physics 55 (2004), 32 – 47, DOI: 10.1007/s00033-003-1089-9.

N. Cristescu and I. Suliciu, Viscoplasticity, Martinus Nijhoff Publishers, Editura Tehnica, Bucharest (1982).

E. H. Essoufi and M. Kabbaj, Existence of solutions of a dynamic Signorini’s problem with nonlocal friction for Viscoelastic Piezoelectric Materials, Bulletin mathematique de la Societe des Sciences Mathematiques de Roumanie 48 (2005), 181 – 195.

M. Frémond, Adhérence des solides, Journal de Mécanique Théorique et Appliquée 6 (1987), 383 – 407.

M. Frémond and K. L. Kuttler, Shillor Existence and uniqueness of solutions for a one-dimensional damage mode, Journal of Mathematical Analysis and Applications 220 (1999), 271 – 294.

M. Frémond and B. Nedjar, Damage in concrete: The unilateral phenomenon, Nuclear Engineering and Design 156 (1995), 323 – 335, DOI: 10.1016/0029-5493(94)00970-A.

M. Frémond and B. Nedjar, Gradient of damage and principle of virtual work, International Journal of Solids and Structures 33 (1996), 1083 – 1103, DOI: 10.1016/0020-7683(95)00074-7.

T. Hadj Ammar, A. Saïdi and A. Azeb Ahmed, Dynamic contact problem with adhesion and damage between thermo-electro-elasto-viscoplastic bodies, Comptes Rendus Mécanique 345 (2017), 329 – 336, DOI: 10.1016/j.crme.2017.03.002.

T. Hadj Ammar, B. Benabderrahmane and S. Drabla, Frictional contact problem for electroviscoelastic materials with long-term memory, damage, and adhesion, Electronic Journal of Differential Equations 222 (2014), 1 – 21.

I. R. Ionescu and M. Sofonea, Frictional contact problem for electro-viscoelastic materials with long-term memory, damage, and adhesion, Oxford University Press, Oxford (1994).

O. Kavian, Introduction á la théorie des points critiques et Applications aux équations elliptiques, Springer-Verlag, Berlin — Heidelberg (1993).

K. L. Kuttler and M. Shillor, Existence for models of damage, preprint (2001).

R. D. Mindlin, Polarisation gradient in elastic dielectrics, Int. J. Solids Structures 4 (1968), 637 – 663.

R. D. Mindlin, Elasticity, piezoelectricity and crystal lattice dynamics, Journal of Elasticity 2 (1972), 217 – 280, DOI: 10.1007/BF00045712.

J. Neˇcas and I. Hlaváˇcek, Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction, Amsterdam, Oxford, New York (1981).

M. Rochdi, M. Shillor and M. Sofonea, Analysis of a quasistatic viscoelastic problem with friction and damage, Advances in Mathematical Sciences and Applications 10 (2000), 173 – 189.

M. Selmani and L. Selmani, A dynamic frictionless contact problem with adhesion and damage, Bulletin of the Polish Academy of Sciences & Mathematics 55 (2007), 17 – 34, DOI: 10.4064/ba55-1-3.

M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes Physics 655, Springer, Berlin (2004), DOI: 10.1007/b99799.

M. Sofonea and M. Barboteu, Analysis and numerical approach of a piezoelectric contact problem, Mathematics and its Applications: Annals of the Academy of Romanian Scientists 1 (2009), 7 – 30.

M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, 276, Chapman-Hall/CRC Press, New York (2006).

P. Suquet, Plasticité et homogénéisation, PhD. thesis, Université Pierre et Marie Curie, Paris 6 (1982).

W. Voigt, Lehrbuch der Kristall-Physik, Teubner, Leipzig (1910).

L. Zhor, Z. Zellagui, H. Benseridi and S. Drabla, Variational analysis of an electro viscoelastic contact problem with friction, Journal of the Association of Arab Universities for Basic and Applied Sciences 14(1) (2013), 99 – 100, DOI: 10.1016/j.jaubas.2012.10.001.

DOI: http://dx.doi.org/10.26713%2Fjims.v12i1.1276

eISSN 0975-5748; pISSN 0974-875X