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Abstract. We introduce the concept of a family of finite directed graphs which are derived from
an infinite directed graph called the f (x)-root digraph. The f (x)-root digraph has four fundamental
properties which are; V (J∞( f (x)))= {vi : i ∈N} and, if v j is the head of an arc then the tail is always a
vertex vi , i < j and, if vk for smallest k ∈N is a tail vertex then all vertices v`, k < `< j are tails of
arcs to v j and finally, the degree of vertex vk is d(vk)= mk+ c. The family of finite directed graphs
are those limited to n ∈N vertices by lobbing off all vertices (and corresponding arcs) vt, t > n. Hence,
trivially we have d(vi)≤ mi+ c for i ∈N.
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1. Introduction
For general notation and concepts in graph theory, we refer to [2, 3, 4, 8]. All graphs mentioned
in this paper are simple, connected finite and directed graphs unless mentioned otherwise. We
introduce the concept of a family of finite Jaco graphs which are directed graphs derived from
the infinite Jaco graph (see Definition 1.1), called the f (x)-root Jaco graph. In this study we
generalise a number of results found in [6, 7] because the aforesaid studies relate to special
cases of linear Jaco graphs.

Definition 1.1. Let f (x) = mx+ c; x,m ∈ N, c ∈ N0. The family of infinite linear Jaco graphs
denoted by {J∞( f (x)) : f (x)= mx+ c; x,m ∈N and c ∈N0} is defined by V (J∞( f (x)))= {vi : i ∈N},
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A(J∞( f (x)))⊆ {(vi,v j) : i, j ∈N, i < j} and (vi,v j) ∈ A(J∞( f (x))) if and only if ( f (i)+ i)−d−(vi)≥ j.

From Definition 1.1 we note the f (x)-root Jaco graph has four fundamental properties which
are:

(a) V (J∞( f (x)))= {vi : i ∈N} and,

(b) if v j is the head of an arc then the tail is always a vertex vi , i < j and,

(c) if vk for smallest k ∈N is a tail vertex then all vertices v`, k < `< j are tails of arcs to v j

and finally,

(d) the degree of vertex k is d(vk)= mk+ c.

Definition 1.2. For f (x)= mx+ c; x,m ∈N and c ∈N0, we define the series (c f (x),n)n∈N0 by

c f (x),0 = 0, c f (x),1 = 1, c f (x),n≥2 =min
{
k < n : mk+ c f (x),k ≥ n

}
.

The connection between the f (x)-root digraph J∞( f (x)) and the series (c f (x),n)n∈N0 is
explained by the following lemma.

Lemma 1.1. Consider the Jaco graph J∞( f (x)) and let n ∈N then the following hold:

(a) d+(vn)+d−(vn)= f (n).

(b) d−(vn+1) ∈ {d−(vn), d−(vn)+1}.

(c) If (vi,vk) ∈ A(J∞( f (x))) and i < j < k, then (v j,vk) ∈ A(J∞( f (x))).

(d) d+(vn)= ((m−1)n+ c)+ c f (x),n, n ≥ 2.

Proof. (a) Invoking Definition 1.1 and since d+(vn)= ( f (n)+n)−n−d−(vn), the result is obvious.

(b) and (c): We prove (b) and (c) simultaneously through induction on n. First of all, d−(v1)= 0
implying d−(v2)= 1= d−(v1)+1.

Let n ≥ 2 and assume result (b) holds for m ≤ n and (c) holds for m ≤ n−1. In particular,
d−(vn) > 0. Let ` < n be minimal with (v`,vn) ∈ A(J∞( f (x))), so ( f (`)+ `)− d−(v`) ≥ n. Let
`< j < n. By induction, we have d−(v`)≤ d−(v j)≤ d−(v`)+ j−` and ( f ( j)+ j)−d−(v j)≥ n. Hence,
and by choice of `, we have (vk,vn) ∈ A(J∞( f (x))) if and only if `≤ k < n, hence result (c) is valid
for n, while d−(vn)= n−` and d+(vn)= ( f (n)+n)− (n−`)= f (n)+`.

If ( f (`)+`)−d−(v`)≥ n+1, then ` is minimal with ( f (`)+`)−d−(v`)≥ n+1. If ( f (`)+`)−d−(v`)=
n, we still, as `+1≤ n, have d−(v`+1) ∈ {d−(v`), d−(v`)+1} and ( f (`+1)+`+1)−d−(v`+1)≥ n+1.
Either way, (v`+1,vn+1) ∈ A(J∞( f (x))). If `+1< j < n, then induction yields d−(v`+1)≤ d−(v j)≤
d−(v`+1)+ ( j−`−1) and ( f ( j)+ j)−d−(v j)≥ n+1. As d−(vn)≤ n−1, (vn,vn+1) ∈ A(J∞( f (x))), so
(vk,vn+1) ∈ A(J∞( f (x))) whenever `+1≤ k ≤ n. Depending on whether (v`,vn+1) ∈ A(J∞( f (x)))
or not, we obtain d−(vn+1)= n+1−`= (n−`)+1= d−(v`)+1 or d−(vn+1)= n+1−(`+1)= d−(vn).

(d) Let n ≥ 3, and, as before, choose ` minimal with (v`,vn) ∈ A(J∞(a)). We prove the result by
induction on n and apply arguments very similar to the ones already used. First of all, d−(v1)= 0,
and d+(v1)= f (1)= ((m−1)1+c)+c f (x),1. Now let n > 1, and, as before, choose ` minimal such that
(v`,vn) ∈ A(J∞(a)). By (a) and (c), d−(vn)= n−`, and d+(vn)= (mn+ c)−n+`= ((m−1)n+ c)+`.
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Induction yields that d+(vk) = d+(vk) = ((m−1)k+ c)+ c f (x),k, whenever k < n. The definition
of ` says that ` is minimal with `+ d+(v`) = ((m− 1)`+ c)+ c f (x),` ≥ n, which means that
`= c f (x),n.

Corollary 1.2. Note that (a) and (b) of Lemma 1.1 entail that d−(vn+1) = (n+1)− c f (x),n+1 ∈
{n− c f (x),n,n− c f (x),n +1} and that (d) then implies that the series (c f (x),n) are well-defined and
ascending, more specifically, c f (x),n+1 ∈ {c f (x),n, c f (x),n +1}, (n ∈N0).

Consider the function g(x)= m1x+ c1; x,m1 ∈N, c1 ∈N0. In respect of f (x) and g(x) we have
the following proposition.

Proposition 1.3. Let k ∈N, and 0≤ g(x)< f (x). Then c f (x),mk+c f (x),k−g(x) = k.

Proof. Let mk+ c f (x),k − g(x) = `. Certainly, mk+ c f (x),k ≥ ` hence, c` ≤ k. On the other hand,
((m−1)k+ c)+ c f (x),k = (mk+ c)+ c f (x),k −k < `, so Corollary 1.2 says ((m−1)k+ c)+ c f (x),k−1 < `
and c` = k.

2. Finite Linear Jaco Graphs
The family of finite linear Jaco graphs are those limited to n ∈ N vertices by lobbing off all
vertices (and corresponding arcs) vt, t > n. Hence, trivially we have d(vi)≤ f (i) for i ∈N.

Definition 2.1. The family of finite linear Jaco graphs denoted by {Jn( f (x)) : f (x) = mx+ c;
x,m ∈N and c ∈N0} is the defined by V (Jn( f (x)))= {vi : i ∈N, i ≤ n}, A(Jn( f (x)))⊆ {(vi,v j) | i, j ∈
N, i < j ≤ n} and (vi,v j) ∈ A(Jn( f (x))) if and only if ( f (i)+ i)−d−(vi)≥ j.

Definition 2.2. Vertices with degree ∆(Jn( f (x))) is called Jaconian vertices and the set of
vertices with maximum degree is called the Jaconian set of the linear Jaco graph Jn( f (x)), and
denoted, J(Jn( f (x))) or, Jn( f (x)) for brevity.

Definition 2.3. The lowest numbered (indexed) Jaconian vertex is called the prime Jaconian
vertex of a linear Jaco graph.

Definition 2.4. If vi is the prime Jaconian vertex, the complete subgraph on vertices
vi+1,vi+2, · · · ,vn is called the Hope subgraph of a linear Jaco graph and denoted, H(Jn( f (x))) or,
Hn( f (x)) for brevity.

2.1 Basic Properties of Linear Jaco Graphs

Property 1. From the definition of a linear Jaco graph Jn( f (x)), it follows that, if for the prime
Jaconian vertex vi , we have d(vi)= f (i), then in the underlying Jaco graph denoted J∗

n ( f (x)) we
have d(vm)= f (m) for all m ∈ {1,2,3, · · · , i}.

Property 2. From the definition of a linear Jaco graph Jn( f (x)), it follows that ∆(Jk( f (x)))≤
∆(Jn( f (x))) for all k ≤ n.

Property 3. From the definition of a linear Jaco graph Jn( f (x)), it follows that the lowest
degree attained by all Jaco graphs is 0≤ δ(Jn( f (x)))≤ f (1).
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Property 4. The d−(vk) for any vertex vk of a linear Jaco graph Jn( f (x)),n ≥ k is equal to d(vk)
in the underlying Jaco graph J∗

k ( f (x)).

Note that henceforth, when the context is clear we interchangeably refer to a linear Jaco
graph Jn( f (x)), (directed) and the underlying Jaco graph J∗

n ( f (x)), (undirected) as a Jaco graph.
Similar, when the context is clear we refer to either arcs or edges.

Figure 1

Illustration 1. Figure 1 depicts the Jaco graph J11( f (x)), f (x)= 2x+1. We note that vertex v4

is the prime Jaconian vertex and J11( f (x))= {v4,v5,v6}.

2.2 Results on Linear Jaco Graphs

Lemma 2.1. For the Jaco graphs Ji( f (x)), i ∈ {1,2,3, . . . , f (1)+1} we have ∆(Ji( f (x)))= i−1 and
J(Ji( f (x)))= {vk : 1≤ k ≤ i}=V (Ji( f (x))).

Proof. If t = f (1)+1 then, (( f (1)+1)+1)−d−(v1) > ( f (1)+1) so from Definition 2.1 it follows
that the arcs (v1,vi), i = 2,3, . . . , ( f (1)+1) exist. It then follows that all arcs (vi,v j), i < j exist.
So the underlying graph J∗

f (1)+1( f (x)) is the complete graph K f (1)+1. Since ∆(Jf (1)+1( f (x))) =
( f (1) + 1) − 1 = f (1) and we have d(vi) = f (1) for all vertices in K f (1)+1, it follows that
∆(Jf (1)+1( f (x))) = f (1) and J(Jf (1)+1( f (x))) = {vk : 1 ≤ k ≤ f (1)} = V (Jf (1)+1( f (x))). The result
follows similarly for t < f (1)+1.

Proposition 2.2. For the Jaco graphs Jf (i)( f (x)), 1≤ i ≤ f (1) the prime Jaconian vertex is the
vertex vi and J f (i)( f (x))= {v` : i ≤ `≤ f (1)+1}.

Proof. Consider the Jaco graph Jf (1)( f (x)). It follows that the induced subgraph J′ = 〈vi;1≤ i ≤
v f (1)+1〉 is the complete graph K f (1)+1, hence dJ′(vi)= f (1), 1≤ i ≤ f (1)+1. It follows immediately
that v1 is the prime Jaconian vertex of J′ and J(J′)= {v` : 1≤ `≤ f (1)+1}.
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Also f (i) > f (1), 2 ≤ i ≤ f (1) so besides the arcs in J′, vi has additional arcs (vi,vs);
f (1)+2 ≤ s ≤ f (i)+1 in Jf (i)+1( f (x)). This amounts to ( f (i)− f (1))−1 additional arcs ∀ v`,
i ≤ ` ≤ f (1) in Jf (i)+1( f (x)). Clearly i is minimal such that arc (vi,v f (i)+1) exists so vi is the
prime Jaconian vertex of the Jaco graph Jf (i)+1( f (x)).

Because dJ′((v`) = f (1), i ≤ `≤ f (1)+1 it follows immediately that dJ′(v`)+ ( f (i)− f (1))−1 =
dJ′(vi)+ ( f (i)− f (1))−1 in Jf (i)+1( f (x)). Hence, J f (i)( f (x))= {v` : i ≤ `≤ f (1)+1}.

Lemma 2.3. If in a Jaco graph Jn( f (x)), and for smallest i, we have d(vi) = f (i) and the arc
(vi,vn) is defined, then vi is the prime Jaconian vertex of Jn( f (x)).

Proof. If in the construction of a Jaco graph Jn( f (x)), and for smallest i, the arc (vi,vn) is
defined, we have that in the underlying graph J∗

n ( f (x)), d(vi) ≤ f (i) and d(v j) ≤ d(vi) for all
j > i. So it follows that d(vi)=∆(Jn( f (i))) so vi is the prime Jaconian vertex of Jn( f (x)).

Lemma 2.4. For all Jaco graphs Jn( f (x)), n ≥ 2 and, vi,vi−1 ∈V (Jn( f (x))) we have in the Jaco
graph J∗

n ( f (x)), that |(d(vi)−d(vi−1)| ≤ m.

Proof. Clearly, max |(d(vi)−d(vi−1)| = f (i)− f (i−1)= mi+ c− (m(i−1)+ c)= m hence, |(d(vi)−
d(vi−1)| ≤ m.

Proposition 2.5. For the Jaco graph Jf (i)( f (x)), i ≥ f (1)+1 the prime Jaconian vertex is a
vertex v j , j ≤ i.

Proof. We have that f (i)− f (i−1)≥ 1. From Lemma 1.1(b) it follows that d−(vi)= d−(vi−1) or
d−(vi−1)+1.

Case 1: Let f (i)− f (i−1)= 1.

1.1: Let d−(vi)= d−(vi−1). It follows that dJf (i)(vi−1)= dJf (i)(vi)+1 hence vi−1 is the prime
Jaconian vertex. Let j = i−1, so j < i.

1.2: Let d−(vi)= d−(vi−1)+1. It follows that dJf (i)(vi−1)= dJf (i)(vi) hence vi−1 is the prime
Jaconian vertex. Let j = i−1, so j < i.

Case 2: Let f (i)− f (i−1)= 2.

2.1: Let d−(vi) = d−(vi−1). It follows that dJf (i)(vi−1) = dJf (i)(vi) hence vi−1 is the prime
Jaconian vertex. Let j = i−1, so j < i.

2.1: Let d−(vi) = d−(vi−1)+1. It follows that dJf (i)(vi) = dJf (i)(vi−1)+1 hence vi is the
prime Jaconian vertex. So equality holds.

By similar reasoning it follows that for all f (i)− f (i−1)≥ 3 vetex vi is the prime Jaconian vertex
hence, the result is settled.

Note that the value of ∆(Jn( f (x))) might repeat itself as n increases to n+1 and on an
increase we always obtain, ∆(Jn+1( f (x)))=∆(Jn( f (x)))+m.
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Theorem 2.6. The Jaco graph Jk( f (x)), k = f ((m+ c)+1)+1 is the smallest Jaco graph in
{Jn( f (x)) : n ∈N} which has ∆(Jk( f (x)))= f ((m+ c)+1) with unique Jaconian vertex v(m+c)+1.

Proof. We will prove the result through imbedded induction.

Let c = 0 so consider the linear function f (x)= mx. For m = 1 let f ′(x)= x. The graph J3( f ′(x))
is clearly the smallest Jaco graph in {Jn( f ′(x)) : n ∈N} for which ∆(J3( f ′(x)))= (1+0)+1= 2 and
J(J3( f ′(x)))= {v((1+0)+1)}= {v2}. So the result holds for m = 1.

Assume the result holds for m = `, and let f ′′(x)= `x. So for the smallest Jaco graph Jl( f ′′(x)),
l = `(`+1)+1 we have that ∆(Jl( f ′′(x)))= `(`+1) and J(Jl( f ′′(x)))= {v(`+1)}.

Now consider the linear function f ′′′(x) = (`+ 1)x. In the Jaco graph Jl( f ′′(x)) the vertex
v(`+1)+1 = v(`+2) has d(v(`+2))= d(v(`+1))−1. So in constructing the Jaco graph Jl( f ′′′(x)), amongst
others the arc (v1,v(m+2)) is linked. So at least v(`+1),v(`+2) ∈ J(Jl( f ′′′(x))). So d(v(`+2))= `(`+1).
If follows that the minimum number of additional vertices (smallest Jaco graph) say t, to be
added to Jl( f ′′′(x)) to obtain d(v(`+2))= (`+1)(`+2) and J(J(l+t)( f ′′′(x)))= {v(`+2)} in J(l+t)( f ′′′(x))
is given by t = (`+1)(`+2)−`(`+1)= 2(`+1). The number of vertices of Jl( f ′′(x)) is given by
`(`+1)+1. Now l+ t = (`(`+1)+1)+2(`+1)= (`+1)(`+2)+1.

Clearly at least v(`+2) ∈ J(Jk( f ′′′(x))),k = l+t, and v(`+1) ∉ J(Jk( f ′′′(x))) since `(`+1)< (`+1)(`+2).
In the construction of the Jaco graph Jl( f ′′′(x)), the arc (v1,v(`+3)) was not linked so d(v(`+3))<
d(v(`+2)) in Jl( f ′′′(x)). So it follows that d(v(`+3)) < d(v(`+2)) in Jk( f ′′′(x)),k = l + t. The latter
implies that J(Jk( f ′′′(x))) is the smallest such Jaco graph and J(Jk( f ′′′(x)))= {v(`+2)}.

Hence the result holds for m = `+1 implying it holds in general for c = 0.

Now let c = 1, and f (x)= mx+1. For m = 1 let f ′(x)= x+1. Clearly J5( f ′(x)) is the smallest Jaco
gaph in {Jn( f ′(x)) : n ∈N} for which ∆(J5( f ′(x))) = f ′(2)+1 = 4 and J(J5( f ′(x))) = {v(2+1)} = {v3}.
So the result holds for m = 1.

Assume it holds for m = `, and let f ′′(x) = `x+1. So for the smallest Jaco graph Jl( f ′′(x)), l =
`2 +2`+1 we have that ∆(Jl( f ′′(x)))= `(`+2) and J(Jl( f ′′(x)))= {v(`+2)}.

Now consider the function f ′′′(x)= (`+1)x+1. In the Jaco graph Jl( f ′′(x)) the vertex v(`+2)+1 =
v`+3 has d(v`+3)= d(v`+2)−1. So in the construction of the Jaco graph Jl( f ′′′(x)), amogst others
the arc (v1,v`+3) is linked. So at least v(`+2),v(`+3) ∈ J(Jl( f ′′′(x))). So d(v(`+3))= `(`+2). If follows
that the minimum number of additional vertices (smallest Jaco graph) say t, to be added
to Jl( f ′′′(x)) to obtain d(v(`+3)) = (`+2)(`+3) and J(J(l+t)( f ′′′(x))) = {v(`+3)} in J(l+t)( f ′′′(x)) is
given by t = (`+2)(`+3)−`(`+2) = 2(`+2). The number of vertices of Jl( f ′′(x)) is given by
(`+1)(`+2)+1. Now l+ t = ((`+1)(`+2)+1)+2((`+1)+1)= (`+2)(`+3)+1.

Clearly at least v(`+3) ∈ J(Jk( f ′′′(x))),k = l + t, and v(`+2) ∉ J(Jk( f ′′′(x))) since (`+1)(`+2) <
(`+2)(`+3). In the construction of the Jaco graph Jl( f ′′′(x)), the arc (v1,v(`+4)) was not linked
so d(v(`+4))< d(v(`+3)) in Jl( f ′′′(x)). So it follows that d(v(`+4))< d(v(`+3)) in Jk( f ′′′(x)),k = l+ t.
The latter implies that J(Jk( f ′′′(x))) is the smallest such Jaco graph and J(Jk( f ′′′(x)))= {v(`+3)}.

Hence the result holds for m = `+1 implying it holds in general for c = 1.

Now assume the result holds for 1≤ m ≤ `1 and 0≤ c ≤ c`. This means that for f ′(x)= `1x+ c`
the smallest Jaco graph Jl( f ′(x)) has ∆(Jl( f ′(x))) = f ′((`1 + c`)+1) = `1(`1 + c`)+1)+ c`. and
J)Jl( f ′(x)))= {v(`1+c`)+1}. Now consider the linear function f ′′(x)= (`1 +1)x+ (c`+1).
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In the Jaco graph Jl( f ′(x)) the vertex v(`+c`+2)+1 = v`+c`+3 has d(v`+c`+3)= d(v`+c`+2)−1. So in
the construction of the Jaco graph Jl( f ′′(x)), amongst others the arc (v1,v`+c`+3) is linked. So
at least v(`+c`+2),v(`+c`+3) ∈ J(Jl( f ′′(x))). So d(v(`+c`+3)) = (`+ c`)(`+ c`+2). If follows that the
minimum number of additional vertices (smallest Jaco graph) say t, to be added to Jl( f ′′(x)) to
obtain d(v(`+c`+3))= (`+ c`+2)(`+ c`+3) and J(J(l+t)( f ′′(x)))= {v(`+c`+3)} in J(l+t)( f ′′(x)) is given
by t = (`+ c`+2)(`+ c`+3)− (`+ c`)(`+ c`+2)= 2(`+ c`+2). The number of vertices of Jl( f ′(x))
is given by (`+ c`+1)(`+ c`+2)+1. Now l+ t = ((`+ c`+1)(`+ c`+2)+1)+2((`+ c`+1)+1)=
(`+ c`+2)(`+ c`+3)+1.

Clearly at least v(`+c`+3) ∈ J(Jk( f ′′(x))), k = l + t, and v(`+c`+2) ∉ J(Jk( f ′′(x))) since (`+ c`+1)
·(`+ c` + 2) < (`+ c` + 2)(`+ c` + 3). In the construction of the Jaco graph Jl( f ′′(x)), the
arc (v1,v(`=c`+4)) was not linked so d(v(`+c`+4)) < d(v(`+c`+3)) in Jl( f ′′(x)). So it follows that
d(v(`+c`+4)) < d(v(`+c`+3)) in Jk( f ′′(x)), k = l + t. The latter implies that J(Jk( f ′′(x))) is the
smallest such Jaco graph and J(Jk( f ′′(x)))= {v(`+c`+3)}.

Hence the result holds for m = `1+1 and c`+1 implying it holds in general for f (x)= mx+c.

3. Number of Arcs of the Finite Jaco Graphs
{Jn( f (x)) : f (x)= mx+ c; x,m ∈N and c ∈N0}

Note, in [6, 7] it was suggested that Theorem 3.7 combined with Binet’s formula perhaps
amounts to a closed formula for d+(vn). The algorithms discussed in Ahlbach et al. [1]
suggest that a general closed formula might not be found despite Binet’s formula being closed.
Theorem 3.8 provides a result for a subset of the family of Jaco graphs Jn( f (x)). First we present
results for c = 0 hence for f (x)= mx.

Proposition 3.1. The number of arcs of a Jaco graph J`(mx)= 1
2`(`−1) if `≤ m+1.

Proof. If `= m+1 then, ((m+1)+1).1−d−(v1) > (m+1) so from Definition 2.1 it follows that
the arcs (v1,vi), i = 2,3, . . . , (m+1) exist. It then follows that all arcs (vi,v j), i < j exist. So the
underlying graph J∗

m+1(m) is the complete graph Km+1 hence, ε(Jm+1(m))= 1
2 m(m+1)= 1

2`(`−1).
The result follows similarly for `< m+1.

Theorem 3.2. If for the Jaco graph Jn(mx), we have ∆(Jn(mx)) = k, then ε(Jn(mx)) =
ε(H(Jn(mx)))+

k∑
i=1

d+(vi).

Proof. For n = 1, d+(v1)= 0 and J1(mx) is the arcless graph on vertex v1 whilst H(J1(mx)), is
an empty graph so A(H(J1(mx)))=;, implying ε(H(J1(mx)))= 0. Thus the result holds.

For n = 2, the Jaco graph J2(mx) has the prime Jaconian vertex v1 and d+(v1)= 1. H(J2(mx))
is the null graph on vertex v2 so A(H(J2(a))) =;, implying ε(H(J2(mx))) = 0. Thus the result
holds.

Now assume it holds for all vertices vi , i ≤ k−1. Thus vertex vk has attained its in-degree
d−(vk). To attain d(vk) = ∆(Jn(mx)), exactly ∆(Jn(mx))− d−(vk) = d+(vk) arcs can be linked
additionally. So the result holds for vertices v1,v2,v3, · · · ,vk.

Clearly we also have A(H(Jn(mx))) ⊂ A(Jn(mx)). Hence, ε(Jn(mx)) = ε(H(Jn(mx)))+ d+(v1)+
d+(v2)+d+(v3)+·· ·+d+(vk).
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Since it is known that ε(H(Jn(mx)))= 1+2+3+·· ·+ (n−∆(Jn(mx))−1) the result can be written

as ε(Jn(mx))= 1
2 (n−k)(n−k−1)+

k∑
i=1

d+(vi).

Corollary 3.3. The number of arcs of a Jaco graph Jn(mx) having vertex vi as the prime
Jaconian vertex, can also be expressed recursively as

ε(Jn+1(mx))=
{
ε(Jn(mx))− i+n if d(vi)= mi
ε(Jn(mx))− i+ (n+1) if d(vi)< mi

Proof. Consider the Jaco graph Jn(mx) having vertex vi as the Jaconian vertex.

Case 1: If d(vi) = mi and the vertex v(n+1) is added to construct J(n+1)( f (x)) only the arcs
(v(i+1),v(n+1)), . . . , (vn,v(n+1)) can be linked additionally. This amounts to (n− i) arcs.

Case 2: If d(vi) < mi and the vertex v(n+1) is added to construct J(n+1)(mx) only the arcs
(vi,v(n+1)), (v(i+1),v(n+1)), . . . , (vn,v(n+1)) can be linked additionally. This amounts to (n−i+1)
arcs.

Lemma 3.4 (see [7]). We find for m = 1 and the series (an)n∈N0 defined by

a0 = 0, a1 = 1, an≥2 =min
{
k < n : k+ak ≥ n

}
,

that Lemma 1.1 changes to:

(a) d+(vn)+d−(vn)= n.

(b) d−(vn+1) ∈ {d−(vn), d−(vn)+1}.

(c) If (vi,vk) ∈ A(J∞(x)) and i < j < k, then (v j,vk) ∈ A(J∞(x)).

(d) d+(vn)= an, n ≥ 2.

Corollary 3.5. Note that (a) and (c) above entail that d+(vn+1)= n+1−d−(vn+1) ∈ {n−d−(vn),
n−d−(vn)+1} and that (d) then implies that the series (an) is well defined and ascending, more
specifically, an+1 ∈ {an,an +1}, (n ∈N0).

Lemma 3.6. Let i ∈N. Then d+(vi+d+(vi))= i = d+(vi+d+(vi+d+(vi−1))).

Proof. Let i+d+(vi)= k. Certainly, i+d+(vi)≥ k, so d+(vk)≤ i. From Lemma 3.4 it follows that
i−1+d+(vi−1)≤ i−1+d+(vi)< i+d+(vi) so d+(vk)≥ i. Let `= i+d+(vi−1). Since d+(vi)≥ d+(vi−1)
we have, d+(v`)≤ i and since, i−1+d+(vi−1)< ` we have, d+(v`)= i.

The next theorem with proof is repeated here. It appears in [6, 7] which are announcement
papers only. Applicable reading related to Fibonacci numbers and Zeckendorf representations is
found in [5, 9].

Theorem 3.7 (Bettina’s Theorem (also see[6, 7])1). Let F= { f0, f1, f2, . . .} be the set of Fibonacci
numbers and let n = f i1 + f i2 + . . .+ f ir ,n ∈N be the Zeckendorf representation of n. Then

d+(vn)= f i1−1 + f i2−1 + . . .+ f ir−1.
1The first author wishes to dedicate this theorem to Dr. Bettina Wilkens, Department of Mathematics, University

of Botswana
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Proof. Through induction we have that first of all, 1 = f2 and d+(v1) = 1 = f1. Let 2 ≤ n =
f i1 + f i2 + . . .+ f ir and let k = f i1−1+ f i2−1+ . . .+ f ir−1. If ir ≥ 3, then k = f i1−1+ f i2−1+ . . .+ f ir−1 is
the Zeckendorf representation of k, such that induction yields d+(vk)= k = f i1−2+ f i2−2+. . .+ f ir−2.
Since k+d+(vk) = f i1−1 + f i1−2 + f i2−1 + f i2 −2+ . . .+ f ir−1 + f ir−2 = f i1 + f i2 + . . .+ f ir = n, read
with Lemma 3.6 yields d+(vn)= k.

Finally consider n = f i1 + f i2 + . . .+ f ir , ir = 2. Note that n > 1 implies that ir−1 ≥ 4 and that the
Zeckendorf representation of n−1 given by n−1= f i1 + f i2 +. . .+ f ir−1 . Let k = d+(vn−1). Through
induction we have that, k = f i1−1 + f i2−1 + . . .+ f ir−1−1, and since ir−1 ≤ 4, this is the Zeckendorf
representation of k. Accordingly, d(vk)= f i1−2+ f i2−2+. . .+ f ir−1−2, and k+d+(vk)= f i1−1+ f i1−2+
f i2−1+ f i2 −2+. . . f ir−1−1+ f ir−1−2 = n−1. It follows that d+(vn)> k = d+(vn−1). From Corollary 3.5
it follows that d+(vn)= k+1= ( f i1−1 + f i2−1 + . . .+ f ir−1−1)+ f1 = f i1−1 + f i2−1 + . . .+ f ir−1.

Since d−(vn)= n−d+(vn), the number of edges is also given by ε(Jn(1))= 1
2 n(n+1)−

n∑
i=1

d+(vi).

Furthermore, for n ≥ 2 we have d+(v1) = 1, so we rather consider ε(Jn(1)) = (1
2 (n(n+1)−1)−

n∑
i=2

d+(vi). Bettina’s theorem can be applied to the last term to determine the number of arcs

of Jn(x).

Illustration 2. For the Jaco Graph J15(x) we have

ε(J15(1))= 1
2
·15 · (15+1)−1−

15∑
i=2

= 119−
15∑
i=2

d+(vi) .

Now, f2 = 1, f3 = 2, f4 = 3, f4+ f2 = 4, f5 = 5, f5+ f2 = 6, f5+ f3 = 7, f6 = 8, f6+ f2 = 9, f6+ f3 = 10,
f6 + f4 = 11, f6 + f4 + f2 = 12, f7 = 13, f7 + f2 = 14 and f7 + f3 = 15.

From Bettina’s Theorem it follows that;

15∑
i=2

d+(vi)= f2 + f3 + ( f3 + f1)+ f4 + ( f4 + f1)+ ( f4 + f2)+ f5 + ( f5 + f1)+ ( f5 + f2)

+ ( f5 + f3)+ ( f5 + f3 + f1)+ f6 + ( f6 + f1)+ ( f6 + f2)

= 5 f1 +4 f2 +4 f3 +3 f4 +5 f5 +3 f6

= f1 +5 f3 +5 f5 +3 f7 = 75.

So, ε(J15(1))= 119−75= 44.

Now we present a result for a special case in respect of f (x)= mx+ c.

Theorem 3.8. For the Jaco graph Jf ( f (1)+1)+1)+1( f (x)) we have that:

ε(Jf ( f (1)+1)+1)+1( f (x)))= ε(K f (1)+1)+ε(K f ( f (1)+1))− f (1))+
1
2

mf (1) · ( f (1)−1),

alternatively,

ε(Jm2+m(c+1)+2( f (x)))= ε(K(m+c)+1)+ε(Km2+m(c−1)−c+2)+ 1
2

m(m+ c) · ((m+ c)−1).
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Proof. Clearly the Jaco graph Jf (1)+1( f (x)) is the complete graph K f (1)+1 = Km+c+1, so the
first term including the first alternative term, follows. Clearly the induced subgraph
〈vi : f (1)+1≤ i ≤ f ( f (1)+1)+1〉 is the complete graph K( f ( f (1)+1)+1)−( f (1)+1)) = Km2+m(c−1)−c+2, so
the second term including the second alternative term, follows.

Consider the graph J′ to be the graph obtained by appending the two complete graphs above
at the common vertex v f (1)+1. To obtain the Jaco graph Jf ( f (1)+1)+1)+1( f (x)) from graph J′ we
have to add all defined arcs from vertices v j ∈ {vi : 2≤ i ≤ f (1)} to vertices vk ∈ {v` : f (1)+2≤ `≤
f ( f (1)+1)}. Choose any such vertex v j and we have dJ′(v j)= f (1)= m+ c. Relabel the vertex v j

to carry index j−1 and denote the vertex v∗j−1. So now we have that dJ′(v∗j−1) = m+ c. Since
dJf ( f (1)+1)+1)+1( f (x))(v j)= m j+ c, the additional m j+ c− (m+ c)= m( j−1) arcs must be added.

Hence,
m+c−1∑
i=2−1

mi = m ·
m+c−1∑
i=2−1

i arcs are required. This simplifies to m ·
m+c−1∑

i=1
i = m · (1

2 (m+ c)(m+
c−1) arcs. By this the result is settled.

3.1 Linear Function Corresponding to a Linear Jaco Graph
It is noted that if for a sufficiently large linear Jaco Graph Jn( f (x)) we have two vertices vi,v j

for which d(vi) = f (i) and d(v j) = f ( j) then the linear function f (x) can be derived by solving
the simultaneous equations:

mi+ c = d(vi), m j+ c = d(v j).

The smallest linear Jaco graph for which this is possible is for Jf (2)+1( f (x)) hence, knowing that
d(v2)= f (2) in the given linear Jaco graph.

Proposition 3.9. If for a linear Jaco graph we have that d(vi)= f (i) and d(vi+1)= f (i+1) then
for maximum i′, j′ for which the arcs (vi,vi′), (vi+1,v j′) exist, we have j′− i′ ∈ {m,m+1}.

Proof. Let d(vi) = f (i) and d(vi+1) = f (i+1) in a sufficiently large linear Jaco graph Jn( f (x)).
Since d(vi+1)− d(vi) = m(i +1)+ c− mi − c = m and from Lemma 1.1(b) we have d−(vi+1) ∈
{d−(vi),d−(vi)+1}, the result follows.

Each positive integer k can be written as k + 1 sums of non-negative integers m + c,
m ≥ 0, c ≥ 0. If in Definition 1.1 we relax the lower limit on m and allow m ≥ 0 we say for
a given k that the linear Jaco graphs corresponding to the functions f i(x)= mix+ ci , mi + ci = k
and 1≤ i ≤ k+1, are f -related Jaco graphs.

For m = 0 and c ≥ 0 we have two special classes of disconnected linear Jaco graphs. For c = 0
the Jaco graph Jn(0) is a null graph (edgeless graph) on n vertices. For c = k > 0, the Jaco graph
Jn(k)= ⋃

b n
k+1 c-copies

Kk+1 ∪Kn−(k+1)·b n
k+1 c.
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Figure 2

Illustration 3. Figure 2 depicts the linear Jaco graph J15(3)= K4 ∪K4 ∪K4 ∪K3.

We note that a complete graph Kn is a linear Jaco graph to any linear function f (x)= mx+ c
if n ≤ m+ c+1. And, if Kn is a f -related linear Jaco graph, the complete graph corresponds to
any of the m+ c+1 defined linear functions. It implies that we need at least a two-component
subgraph of complete graphs say Ks ∪K t to derive the unique linear function f (x) = k−1,
k =max{s, t}.

4. Conclusion
Thus far all studies of Jaco graphs were indeed on linear Jaco graphs. We largely generalised the
results announced in [6, 7]. Also note that the Jaco graphs Jn(1) and Jn(a) as discussed in [6, 7]
have a slightly different meaning to that defined in this paper. This might make comparative
reading somewhat confusing. The generalisation suggests uniform notation. Amongst the many
open problems that exist within the family of Jaco graphs the authors view, finding a closed
formula for the number of arcs (edges) of a Jaco graph the most challenging and interesting.
Perhaps Theorem 3.8 lays the foundation to further seek such closed formula.

It is proposed that the generalisation of the concepts to polynomial Jaco graphs Jn( f (x)) where

f (x) =
t∑

i=1
aixi + c, ai, x ∈ N and c ∈ N0, will be worthy to study. Definition 1.1 will have to

change to define the orientation of edges resulting from f (x)< 0. Also, given a sufficiently large
polynomial Jaco graph, deriving the polynomial function can be formalised.
It is meant to be an introductory paper to encourage further research.
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