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1. Introduction
The factorial notation (!) was introduced by Christian Kramp in 1808 for positive integers and
is frequently used to compute the binomial coefficients. When x is any positive real number, the
problem was solved in 1729 by Euler, who defined the generalized factorial function which is
now called the gamma function. The relationship between Euler gamma function and ordinary
factorial function is Γ(n) = (n−1)!, n is a positive integer. On the other hand, the gamma
function is defined for all real numbers except n = 0,−1,−2, . . . . Here, we begin with a simpler
generalization of n! called a shifted factorial and named as Appells symbol (see [1])

(α,n)=α(α+1)(α+2) . . . (α+n−1). (1.1)

This product of n factors, beginning with any complex number α and increasing by unit steps,
as a special case (α,0) = 1 and (1,n) = n!. The product was studied by James Stirling (1730).
Afterwords, the German mathematician Leo Pochhammer defined shifted (rising) factorial,
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which was named as Pochhammer’s symbol and is denoted by (α)n used more widely for the
same quantity. The Pochhammer’s symbol can be expressed in terms of Euler gamma function
by the following relation (1.2) which has more fundamental importance (see [2]).

Γ(α+n)
Γ(α)

= (α)n. (1.2)

The Pochhammer’s symbol
(1

2

)
n is a rational number for all integers n, but in limiting case

for large n, it has remarkable connections with irrational numbers π and e. The first of the
connections was formed by Johan Wallies at Oxford in 1656 given by

π

2
= 2.2.4.4.6.6 . . .

1.3.3.5.5.7 . . .
, (1.3)

which can be written in the form of Pochhammer’s symbol as

π

2
= lim

n→∞
(n!)2(1

2

)
n

(3
2

)
n

, (1.4)

and also π
2 is the first positive root of the trigonometric equation cosθ = 0, so

lim
n→∞

(1
2

)
n
p

n

(1)n
= 1

π
1
2

. (1.5)

If n is very large positive integer, then computation of n! is tedious. An easy technique of
computing an approximate value was introduced by Stirling (1730) and modified by De Moiver,
which is given as

n!= (1)n ∼ (2πn)
1
2

(n
e

)n
, (1.6)

where e is the irrational number and symbol ∼ shows the ratio of the two sides approaches to
unity as n →∞. The connection between e and Pochhammer’s symbol for large values of n is
given by (

1
2

)
n
∼ (2)

1
2

(n
e

)n
. (1.7)

2. Pochhammer’s symbol and gamma function

Definition 2.1. For α ∈C and a non-negative integer n, the Pochhammer’s symbol is defined
by

(α)n =
{
α(α+1)(α+2) . . . (α+n−1), n ∈N
1, n = 0 ,α 6= 0.

(2.1)

Remarks. From the above definition, we conclude (α)n = (α+n−1)(α)n−1 . For α 6= 1,2, . . . ,n,
the above definition becomes (α)−n = 1

(α−1)(α−2)...(α−n) . Also, we see that(−n)m = 0 if n, m are
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integers and 0≤ n < m. For example, (−3)5 = (−3)(−2)(−1)(0)(1)= 0 and consequently a series
sometimes terminates after a finite number of terms. So, consider the binomial series

(1− x)−a = 1+ax+a(a+1)
x2

2!
+ . . .=

∞∑
m=0

(a)m
xm

m!
, |x| < 1 . (2.2)

If a =−n is a negative integer, all the coefficients (−n)m with n < m become zero and the series
(2.2) terminates reducing to the binomial theorem.

Proposition 2.2. Let the complex number α and the integers m and n be such that both sides
of the following equations are satisfied, then we have addition formula, reflection formula and
the duplication formula respectively as

(α)m+n = (α)m(α+m)n , (2.3)

(α)−n = (−1)n

(1−α)n
, (2.4)

(2α)2n = 22n(α)n

(
α+ 1

2

)
n

. (2.5)

Remarks. Above three results are proved in [3] in the form of Appell’s symbol. The use of

(2.3) and (2.4) occurs in the sums like
n∑

m=0
f (m,n). A factor of the form 1

(a)m
or 1

(a)n−m
can be

changed into (−1)m(b)n−m or (−1)m(b)m respectively after multiplied by a quantity which does
not depend upon m. The more explicit case is

1
(a)n−m

= 1
(a)n(a+n)−m

= (−1)m(1−a−n)m

(a)n
, (2.6)

where b = 1−a−n does not involve the summation index. In the second case, it is useful way to
add and subtract n i.e.,

1
(a)m

= 1
(a)n−n+m

= 1
(a)n(a+n)−n+m

= (−1)n−m(1−a−n)n−m

(a)n
. (2.7)

When we are concerned with the convergence, it will be useful to have an inequality for
Pochhammer’s symbol. If n is a non-negative integer, then

|(a)n| = |a(a+1)(a+2) . . . (a+n−1)| = |a||a+1||a+2| . . . |a+n−1|
|(a)n| ≤ |a|(|a|+1)(|a|+2) . . . (|a|+n−1)⇒|(a)n| ≤ (|a|)n. (2.8)

If a ∈C, the Pochhammer’s symbol is related to the binomial coefficients as(
a
0

)
= 1 and

(
a
n

)
= a(a−1)(a−2) . . . (a−n+1)

n!
= (−1)n(−a)n

n!
, for n > 0 (2.9)

and if n is negative integer, 1
n! = 0 because for every n ∈Z, the relation n

n! = 1
(n−1)! is preserved.

Therefor, the relation (a)n remains useful for negative integers n and
(a
n
)

can only be taken to
vanish (not usually defined).
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Now, we give the generalized version of the addition formula (2.3) and product formula (2.5).

Lemma 2.3. Let the complex number α and the integers m1,m2, . . . ,mn satisfy the conditions of
the following relations, then generalized form of the addition formula is

(α)m1+m2+...+mn = (α)m1(α+m1)m2 . . . (α+m1 +m2 + . . .+mn−1)mn (2.10)

and for r ∈N, the multiplication formula is given by

(rα)rn = rrn(α)n

(
α+ 1

r

)
n

(
α+ 2

r

)
n

. . .
(
α+ r−1

r

)
n
= rrn

r−1∏
s=0

(
α+ s

r

)
n

. (2.11)

Proof. Use the definition of Pochhammer’s symbol to obtain the desired proof.

Corollary 2.4. In terms of gamma function, the above addition formula (2.10) can be written as

(α)m1+m2+...+mn =
Γ(α+m1 + . . .+mn)

Γ(α)
. (2.12)

Proof. Applying the relation (1.2) on R.H.S of the relation (2.10), we proceed as

Γ(α+m1)
Γ(α)

Γ(α+m1 +m2)
Γ(α+m1)

. . .
Γ(α+m1 + . . .+mn)
Γ(α+m1 + . . .+mn−1)

= Γ(α+m1 + . . .+mn)
Γ(α)

.

Corollary 2.5. If α is not multiple of any natural number, then another form of the
multiplication formula (2.11) is given by

(α)rn = rrn
(α

r

)
n

(
α+1

r

)
n

(
α+2

r

)
n

. . .
(
α+ r−1

r

)
n
= rrn

r−1∏
s=0

(α+ s
r

)
n

. (2.13)

Proof. Apply the definition of Pochhammer’s symbol and rearrange the terms to get the required
result.

Definition 2.6. If n =−2,−1,0, . . ., the double and triple factorials are defined in [4] as

n!!=


n(n−2)(n−4) . . .6.4.2 if n is even
n(n−2)(n−4) . . .5.3.1 if n is odd
1, if n = 0,−1 ; (−2n)!!=∞, n ∈N

(2.14)

and

n!!!=


n(n−3)(n−6) . . .9.6.3 if n is of the form3n
n(n−3)(n−6) . . .8.5.2 if n is of the form(3n−1)
n(n−3)(n−6) . . .7.4.1 if n is of the form(3n−2)
1, if n = 0,−1,−2 ; (−3n)=∞, n ∈N.

(2.15)

Now, we establish a relationship between Pochhammer’s symbol and multiple factorials.
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Proposition 2.7. Using the above definitions, the higher order factorials can be expressed in
terms of Pochhammer’s symbol as

(2n)!!= 2n(1)n , (2n−1)!!= 2n
(
1
2

)
n

, (2n+1)!!= 2n
(
3
2

)
n

(2.16)

and

(3n)!!= 3n(1)n , (3n−1)!!= 3n
(
2
3

)
n

, (3n−2)!!= 3n
(
1
3

)
n

. (2.17)

Proof. As given earlier that n!= (1)n and
(1

2

)
n = (1

2

)(3
2

)(5
2

)
. . .

(
n− 1

2

)
. Thus, if n is even,

n!!= (2n)!!= 2n(2n−2)(2n−4) . . .6.4.2= 2nn!= 2n(1)n,

if n is odd, i.e. of the form 2n−1,

n!!= (2n−1)!!= (2n−1)(2n−3) . . .5.3.1= 2n
(
n− 1

2

)
. . .

(
5
2

)(
3
2

)(
1
2

)
= 2n

(
1
2

)
n

,

if n is odd of the form 2n+1, then

n!!= (2n+1)!!= (2n+1)(2n−1) . . .5.3= 2n
(
n+ 1

2

)
. . .

(
5
2

)(
3
2

)
= 2n

(
3
2

)
n

.

Similarly, we have the results for triple factorials. If n is of the form 3n,

n!!!= (3n)!!!= 3n(3n−3)(3n−6) . . .9.6.3= 3nn!= 3n(1)n,

if n is of the form (3n−1),

n!!!= (3n−1)!!!= (3n−1)(3n−4) . . .8.5.2= 3n
(
n− 1

3

)
. . .

(
8
3

)(
5
3

)(
2
3

)
= 3n

(
2
3

)
n

,

and if n is of the form (3n−2), then

n!!!= (3n−2)!!!= (3n−2)(3n−5) . . .7.4.1= 3n
(
n− 2

3

)
. . .

(
7
3

)(
4
3

)(
1
3

)
= 3n

(
1
3

)
n

.

Remarks. The above results can be generalized up to finite number of higher order factorials.
If r is any natural number, the r factorials, denoted by n!r , means !!! . . . r-times [4]. In terms of
Pochhammer’s symbol, it can be expressed as

n!r =



rn(1)n if n is of the form rn
rn ( r−1

r
)
n if n is of the form (rn−1)

rn ( r−2
r

)
n if n is of the form (rn−2)

...
rn (1

r
)
n if n is of the form (rn− (r−1)).

(2.18)
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Limit Formulae 2.8. The Euler gamma function can be obtained from Pochhammer’s symbol
by a limiting process. With the help of this symbol, we can move to the several important
properties of gamma function. Here, we give some limit formulae given in [2] that will be helpful
in our future work.

(i) Let x ∈R, x > 0 and b+ x ∈C\{0,−1,−2, . . .}, then

lim
x→∞

Γ(a+ x)
Γ(b+ x)

xb−a = 1 (2.19)

(ii) Let x ∈C\{0,−1,−2, . . .} and n is a non-negative integer, then

Γ(x)= lim
n→∞

(1)n

(x)n
nx−1 (2.20)

(iii) From the relations (1.2) and (2.19) we can prove that

lim
n→∞

(a)n

(b)n
nb−a = Γ(b)

Γ(a)
(2.21)

(iv) After replacing a, b and n by 2a, 2b and 2n respectively in the equation (2.21), we have

Γ(2b)
Γ(2a)

= 22bΓ(b)Γ
(
b+ 1

2

)
22aΓ(a)Γ

(
a+ 1

2

) , (2.22)

and setting a = 1
2 , b = x in (2.22) implies

Γ(2x)= 22x−1(π)−1/2Γ(x)Γ
(
x+ 1

2

)
,

which is the Legendre’s duplication formula.

Remarks. The formula (2.20) is often attributed to Gauss, but it is only a variant of Euler’s
infinite product

Γ(x)= 1
x

∞∏
n=1

(
1+ 1

n

)x (
1+ x

n

)−1
, x ∈C\{0,−1,−2, . . .}. (2.23)

Lemma 2.9. If r−1 ∈N, then we have

Γ

(
1
r

)
Γ

(
2
r

)
Γ

(
3
r

)
. . .Γ

(
r−1

r

)
= r−

1
2 (2π)

(r−1)
2 . (2.24)

Proof. In the relation (2.20), replace x by
(1

r , 2
r , . . . , r−1

r ,
( r

r = 1
))

and multiply all the results.
Then use (1)n = n! and (1)rn = (rn)!, in the Stiriling formula (1.6) for n! and (rn)! to reach the
required proof.

Lemma 2.10. If r−1 ∈N, and ra, rb ∈C\{0,−1,−2, . . .}, then we have

Γ(rb)
Γ(ra)

= rrbΓ(b)Γ
(
b+ 1

r
)
Γ

(
b+ 2

r
)
. . .Γ

(
b+ r−1

r
)

rraΓ(a)Γ
(
a+ 1

r
)
Γ

(
a+ 2

r
)
. . .Γ

(
a+ r−1

r
) . (2.25)
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Proof. Replacing a,b and n by ra, rb and rn respectively in (2.21) along with the Lemma 2.9
and relation (2.19), we have the proof.

Corollary 2.11. If we set b = x and a = 1
r in the above lemma, we get

Γ(rx)
Γ(1)

= rrxΓ(x)Γ
(
x+ 1

r
)
Γ

(
x+ 2

r
)
. . .Γ

(
x+ r−1

r
)

rΓ
(1

r
)
Γ

(2
r
)
Γ

(3
r
)
. . .Γ

( r−1
r

)
Γ(1)

.

Using the Lemma 2.9 in the denominator, we have

Γ(rx)= rrx− 1
2 (2π)

(1−r)
2 Γ(x)Γ

(
x+ 1

r

)
. . .Γ

(
x+ r−1

r

)
which is the Gauss multiplication theorem valid for rx ∈C\{0,−1,−2, . . .} and if r = 2, it will be
the Legendre’s duplication formula.

3. k-Pochhammer’s Symbol and k-Gamma Function

Recently, Diaz and Pariguan [5] introduced the generalized k-gamma function as

Γk(x)= lim
n→∞

n!kn(nk)
x
k−1

(x)n,k
, k > 0, x ∈C\ kZ− (3.1)

and also gave the properties of said function. The Γk is one parameter deformation of the
classical gamma function such that Γk →Γ as k → 1. The Γk is based on the repeated appearance
of the expression of the following form

α(α+k)(α+2k)(α+3k) . . . (α+ (n−1)k). (3.2)

The function of the variable α given by the statement (3.2), denoted by (α)n,k , is called the
Pochhammer k-symbol. We obtain the usual Pochhammer symbol (α)n by taking k = 1. This
product of n factors, beginning with any complex number α and increasing each step by k, as
a special case (α)0,k = 1, and (α)n,k = (α+nk− k)(α)n−1,k . Also, the above definition becomes
(α)−n,k = 1

(α−k)(α−2k)...(α−nk) for α 6= k,2k, . . . ,nk and a link between k-gamma function and k-
pochhammer’s symbol is given by

(x)n,k =
Γk(x+nk)
Γk(x)

. (3.3)

The definition given in relation (3.1), is the generalization of Γ(x) and the integral form of Γk is
given by

Γk(x)=
∫ ∞

0
tx−1e−

tk
k dt, Re(x)> 0 . (3.4)

From relation (3.4), we can easily show that

Γk(x)= k
x
k−1Γ

( x
k

)
. (3.5)
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Also, the researchers [6–11] have worked on the generalized k-gamma function and discussed
the following properties:

Γk(x+k)= xΓk(x) (3.6)

Γk(k)= 1, k > 0 (3.7)

Γk(x)= a
x
k

∫ ∞

0
tx−1e−

tk
k adt, a ∈R (3.8)

Γk(αk)= kα−1Γ(α), k > 0, α ∈R (3.9)

Γk(nk)= kn−1(n−1)!, k > 0, n ∈N (3.10)

Γk

(
(2n+1)

k
2

)
= k

2n−1
2

(2n)!
p
π

2nn!
, k > 0, n ∈N. (3.11)

In [12], it is proved that gamma function Γ(z) is analytic on C except the poles at z = 0,−1,−2, . . .
and the residue at z =−n is equal to (−1)n

n! , n = 0,1,2, . . .. Recently, Mubeen et al. [13] proved
that for k > 0, the function Γk(x) is analytic on C, except the single poles at x = 0,−k,−2k, . . .
and the residue at x =−nk is 1

(−1)nknn! .

Proposition 3.1. If (α)n and (α)n,k shows the Pochhammer’s symbol and k-Pochhammer’s
symbol respectively, then we have

(α)n,k = kn
(α

k

)
n

. (3.12)

Proof. From the relation (3.2), we have

(α)n,k =α(α+k)(α+2k)(α+3k) . . . (α+ (n−1)k)

= kn
(α

k

)(α
k
+1

)(α
k
+2

)
. . .

(α
k
+n−1

)
⇒ (α)n,k = kn

(α
k

)
n

.

Remarks. From the above conclusion, we see that (k)n,k = kn(1)n = knn! and (1)n,k = kn ( 1
k
)
n .

Theorem 3.2. Let the complex number α and the integers m and n be such that both sides of
the following equations are satisfied, then for k > 0, we have

(α)m+n,k = (α)m,k(α+mk)n,k (addition formula) (3.13)

(α)−n,k =
(−1)−nk

(k−α)n,k
(3.14)

(2α)2n,k = 22n(α)n,k

(
α+ k

2

)
n,k

(multiplication formula). (3.15)

Proof. To prove the addition formula, we use the definition of k-Pochhammer symbol on R.H.S
of the equation (3.13) and obtain

(α)m,k(α+mk)n,k =α(α+k) . . . (α+ (m−1)k)(α+mk) . . . (α+mk+ (n−1)k)= (α)m+n,k .
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Now, we prove the relation (3.14). For n = 0, the case is trivial and if n is a positive integer, by
definition of k-Pochhammer symbol, we have

(α)−n,k =
1

(α−k)(α−2k) . . . (α−nk)
= (−1)−nk

(k−α)n,k
,

and if n is negative integer i.e. n =−N . We apply the preceding result on R.H.S of the relation
(3.14) as

(−1)−nk

(k−α)n,k
= (−1)Nk

(k−α)−N,k
= (k−k+α)N,k = (α)−n,k ,

which completes the proof. To prove the multiplication formula (3.15), we proceed as

(2α)2n,k = (2α)(2α+k) . . . (2α+ (n−1)k)(2α+nk) . . . (2α+ (2n−2)k)(2α+ (2n−1)k).

Separating the even and odd terms and taking common 2n from each group, we get

(2α)2n,k = 2n(α)(α+k) . . . (α+ (n−1)k) ·2n
(
α+ k

2

)(
α+ k

2
+k

)
. . .

(
α+

(
n− 1

2

)
k
)

which implies that

(2α)2n,k = 22n(α)n,k

(
α+ k

2

)
n,k

.

Theorem 3.3. For k > 0, let the complex number α and the integers m1,m2, . . . ,mn satisfy the
conditions of the following relations, then generalized form of the addition formula is given by

(α)m1+...+mn,k = (α)m1,k(α+m1k)m2,k . . . (α+k(m1 + . . .+mn−1))mn,k (3.16)

and for r ∈N, the multiplication formula in generalized form is given by

(rα)rn,k = rrn
r−1∏
s=0

(
α+ sk

r

)
n,k

. (3.17)

Proof. The procedure adopted in the proof of the Theorem 3.2 is applicable here for n terms to
get the generalized result.

To prove the multiplication formula (3.17), just use the definition of Pochhammer k-symbol
as (rα)rn,k = (rα)(rα+ k)(rα+2k) . . . (rα+ (n−1)k)(rα+nk)(rα+nk+ k) . . . (rα+ (2n−1)k)(rα+
2n)(rα+2nk+k) . . . (rα+ (rn−1)k) and rearrange the terms to get the required result.

Corollary 3.4. The above addition formula (3.16), can be written in terms of k-gamma function
as

(α)m1+m2+...+mn,k =
Γk(α+ (m1 + . . .+mn)k)

Γk(α)
. (3.18)
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Corollary 3.5. If α is not multiple of any natural number, then another form of the
multiplication formula (3.17) is given by

(α)rn,k = rrn
(α

r

)
n,k

(
α+k

r

)
n,k

. . .
(
α+ (r−1)k

r

)
n,k

= rrn
r−1∏
s=0

(
α+ sk

r

)
n,k

. (3.19)

Theorem 3.6. Let n ∈N and a,b ∈C. Then for k > 0, we have

n∑
m=0

(a)m,k(b)n−m,k

m!(n−m)!
= (a+b)n,k

n!
. (3.20)

Proof. Consider the binomial series

(1− x)−
a
k = 1+

(a
k

)
x+

(−a
k
)(−a

k −1
)

2!
(−x)2 +

(−a
k
)(−a

k −1
)(−a

k −2
)

3!
(−x)3 + . . .

= 1+
(a
k

)
x+

(a
k
)(a+k

k
)

2!
x2 +

(a
k
)(a+k

k
)(a+2k

k
)

3!
x3 + . . .

=
∞∑

m=0

1
km (a)m,k

xm

m!
.

Similarly, we have

(1− x)−
b
k = 1+

(
b
k

)
x+

( b
k
)( b+k

k
)

2!
x2 + . . .=

∞∑
m′=0

1
km′ (b)m′,k

xm′

m′!

and

(1− x)−
a+b

k =
∞∑

n=0

1
kn (a+b)n,k

xn

n!
.

By substituting these values in (1− x)−
a
k (1− x)−

b
k = (1− x)−

(a+b)
k , we get

∞∑
m=0

1
km (a)m,k

xm

m!

∞∑
m′=0

1
km′ (b)m′,k

xm′

m′!
=

∞∑
n=0

1
kn (a+b)n,k

xn

n!
,

where the summation extends over all nonnegative integers m and m′ whose sum is n and
m′ = n−m. Thus, we have

∞∑
m=0

∞∑
m′=0

(a)m,k(b)m′,k

m!m′!
xn =

∞∑
n=0

(a+b)n,k
xn

n!
,

and equating the coefficients of xn , we get

∑ (a)m,k(b)n−m,k

m!(n−m)!
= (a+b)n,k

n!
.

Corollary 3.7. Theorem 3.6 contains the binomial theorem as a limiting case.
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Proof. If we set a = cx, then definition of Pochhammer k-symbol implies

(cx)m,k = cx(cx+k)(cx+2k) . . . (cx+ (m−1)k).

Dividing both sides by cm and taking limit c →∞, we get

(cx)m,k

cm = cx
c

(cx+k)
c

(cx+2k)
c

. . .
(cx+ (m−1)k)

c
→ xm.

Similarly, by setting b = cy, we have

(cy)n−m,k

cn−m → yn−m and
(cx+ cy)n,k

cn → (x+ y)n.

Now, Theorem 3.6 becomes

n∑
m=0

xm yn−m

m!(n−m)!
= (x+ y)n

n!
⇒ (x+ y)n =

n∑
m=0

(
n
m

)
xm yn−m,

which is the usual form of the binomial theorem.

Remarks. An important summation formula was proved by Vandermonde (1772 [14]). The
Chines mathematician Chu published a less general form of the theorem in 1303 [15], we will
call it Vandermonde’s theorem and for convenience will use the same name to designate an
extension to multiple sums. The above Theorem 3.6 is the k-analogue of Vandermonde’s theorem
and it contains the binomial theorem as a limiting case.

Theorem 3.8. If a1,a2, . . . ,an are complex numbers and k > 0, then we have the generalized
form of multiplication theorem as∑ (a1)m1,k(a2)m2,k . . . (ar)mr ,k

m1!m2! . . .mr!
= (a1 +a2 + . . .+ar)n,k

n!
(3.21)

where the summation extends over all non negative integers m1,m2, . . . ,mr whose sum is n.

Proof. Consider the binomial series as in previous theorem, so using the results in
(1− x)−

a1
k (1− x)−

a2
k . . . (1− x)−

ar
k = (1− x)−

(a1+a2+...+ar )
k , we get

1
km1+m2+...+mr

∞∑
m1=0

(a1)m1,k

xm1

m1!
. . .

∞∑
mr=0

(ar)mr,k

xmr

mr!
= 1

kn

∞∑
n=0

(a1 + . . .+ar)n,k
xn

n!
.

By comparing the coefficients of xn , we get the desired result.

Remarks. The above theorem is the k-analogue of Vandermondes’s theorem with multiple
sums. If k = 1, we have the classical Vandermonde’s theorem with multiple sums. Also, the
Vandermonde’s theorem contains the multi nomial theorem as a limiting case which can be
expressed in the form of the relation (3.22) (by setting ai = cxi , i = 1,2, . . . , r in the Theorem 3.8)

(x1 + x2 + . . .+ xr)n =∑ n!
m1!m2! . . .mr!

xm1
1 xm2

2 . . . xmr
r , (3.22)

where the summation extends over all nonnegative integers m1,m2, . . . ,mr whose sum is n.
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Lemma 3.9. Let I be an interval in R and let the functions f : I →R+ and g : I →C satisfy the
following conditions

(i) f attains its maximum at a point y in the interior of I , the supremum of f in any closed
interval not containing y is strictly less than f (y) and there is a neighborhood of y in
which f ′′ exist, continuous and strictly negative,

(ii) g is continuous at y and g(y) 6= 0,

(iii) f and g are Lebesgue measurable and there exist r ∈R such that |g| f ′ is integrable on I ,
then for x ∈R and x →∞ (see [16–18])∫

I
g(t)[ f (t)]xdt ∼ g(y)[ f (y)]x+ 1

2

[ −2π
xf ′′(y)

] 1
2

. (3.23)

The k-gamma function can be obtained from the Pochhammer k-symbol by a limiting process.
With the help of these limit formulas, we can prove several important properties of k-gamma
function. Here we introduce some k-analogue limit formulae that will be helpful in proving our
coming results.

Theorem 3.10. If n ∈N, k > 0 and a+nk,b+nk ∈C\{0,−k,−2k, . . .}, then

lim
n→∞

Γk(a+nk)
Γk(b+nk)

(nk)
b
k− a

k = 1 . (3.24)

Proof. Using the integral form of k-gamma function (3.4), we have

Γk(a+nk)=
∫ ∞

0
τa+nk−1e−

τk
k dτ.

Setting τk

k = nt ⇒ τ= (nkt)1/k and above equation becomes

Γk(a+nk)(nk)
−a
k −n = 1

k

∫ ∞

0
t

a
k−1(te−t)ndt.

As te−t has a single maximum at t = 1 and t
a
k−1 is continuous at that point, so for large n, the

value of the integral can be estimated by Lemma 3.9. Thus, we have

Γk(a+nk)(nk)
−a
k −n ∼ 1

k
(1)

a
k−1h(n)= h(n), n →∞ (3.25)

and

Γk(b+nk)(nk)
−b
k −n ∼ 1

k
(1)

b
k−1h(n)= h(n), n →∞. (3.26)

Dividing the equation (3.25) by (3.26), we have the required proof.

Corollary 3.11. If n−1 ∈N,k > 0 and x ∈C\{0,−k,−2k, . . .}, then

Γk(x)= lim
n→∞

(k)n,k

(x)n,k
(nk)

x
k−1. (3.27)
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Proof. Using the relation (3.3), we have

(a)n,k

(b)n,k
= Γk(a+nk)

Γk(a)
Γk(b)

Γk(b+nk)
.

Multiplying both sides by n
b
k− a

k , taking limit n →∞ and using the Theorem 3.10, we get

lim
n→∞

(a)n,k

(b)n,k
(nk)

b
k− a

k = lim
n→∞

Γk(a+nk)
Γk(b+nk)

(nk)
b
k− a

k
Γk(b)
Γk(a)

= Γk(b)
Γk(a)

. (3.28)

Setting a = k and b = x with Γk(k)= 1, we approaches our result.

Remarks. If we use x = k
2 , we find the important result Γk

( k
2

)=√
π
k which is a conclusion of

the relation (3.11). Also, if k = 1, we have Γ
(1

2

)=p
π proved [12].

Theorem 3.12. If r−2 ∈N, k > 0, then we have

Γk

(
k
r

)
Γk

(
2k
r

)
Γk

(
3k
r

)
. . .Γk

(
(r−1)k

r

)
= k

(1−r)
2 r−

1
2 (2π)

(r−1)
2 . (3.29)

Proof. Replacing x by k
r , 2k

r , . . . , (r−1)k
r and rk

r in the relation (3.5) respectively, we have

Γk

(
k
r

)
= k

1
r −1Γ

(
1
r

)
, Γk

(
2k
r

)
= k

2
r −1Γ

(
2
r

)
Γk

(
(r−1)k

r

)
= k

r−1
r −1Γ

(
r−1

r

)
. . . Γk

(
rk
r

)
= k1−1Γ(1)= 1.

Multiplying all above equations and applying the Lemma 2.9, we get

Γk

(
k
r

)
Γk

(
2k
r

)
. . . Γk

(
(r−1)k

r

)
= k

1
r + 2

r +...+ r−1
r −(r−1) Γ

(
1
r

)
Γ

(
2
r

)
. . . Γ

(
r−1

r

)
= k

1+2+3+...+(r−1)
r −(r−1)r−

1
2 (2π)

(r−1)
2

= k
(1−r)

2 r−
1
2 (2π)

(r−1)
2 .

Theorem 3.13. If r−1 ∈N, k > 0, and ra, rb ∈C\{0,−k,−2k, . . .}, then we have

Γk(rb)
Γk(ra)

=
r

rb
k Γk(b)Γk

(
b+ k

r
)
Γk

(
b+ 2k

r
)
. . .Γk

(
b+ (r−1)k

r

)
r

ra
k Γk(a)Γk

(
a+ k

r
)
Γk

(
a+ 2k

r
)
. . .Γk

(
a+ (r−1)k

r

) . (3.30)

Proof. Replacing a, b and n by ra, rb and rn respectively in the relation (3.28) along with the
relation (3.17), we obtain

Γk(rb)
Γk(ra)

= lim
n→∞

(ra)rn,k

(rb)rn,k
(rnk)

rb
k − ra

k

= lim
n→∞

(a)n,k
(
a+ k

r
)
n,k

(
a+ 2k

r
)
n,k . . .

(
a+ (r−1)k

r

)
n,k

(b)n,k
(
b+ k

r
)
n,k

(
b+ 2k

r
)
n,k . . .

(
b+ (r−1)k

r

)
n,k

(rnk)
rb
k − ra

k ,
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which is equivalent to

= r
rb
k

r
ra
k

lim
n→∞

(a)n,k

(b)n,k
(nk)

b
k− a

k lim
n→∞

(
a+ k

r
)
n,k(

b+ k
r
)
n,k

(nk)
b
k− a

k . . . lim
n→∞

(
a+ (r−1)k

r

)
n,k(

b+ (r−1)k
r

)
n,k

(nk)
b
k− a

k .

By using (3.28), the proof will be completed.

Corollary 3.14. Setting b = x and a = k
r in the above theorem, we have

Γk(rx)
Γk(k)

=
r

rx
k Γk(x)Γk

(
x+ k

r
)
Γk

(
x+ 2k

r
)
. . .Γk

(
x+ (r−1)k

r

)
rΓk

( k
r
)
Γk

(2k
r

)
Γk

(3k
r

)
. . .Γk

(
(r−1)k

r

)
Γk(k)

,

and use of the Theorem 3.12 along with Γk(k)= 1 implies

Γk(rx)=
r

rx
k −1Γk(x)Γk

(
x+ k

r
)
Γk

(
x+ 2k

r
)
. . .Γk

(
x+ (r−1)k

r

)
k

(1−r)
2 r−

1
2 (2π)

(r−1)
2

which is equivalent to

Γk(rx)= r
rx
k − 1

2 k
(r−1)

2 (2π)
(1−r)

2 Γk(x) Γk

(
x+ k

r

)
Γk

(
x+ 2k

r

)
. . . Γk

(
x+ (r−1)k

r

)
.

Remarks. The above Corollary is the k-analogue of Gauss multiplication theorem. If we use
r = 2, we have k-analogue of Legendre duplication formula proved in [6]. Also, if k = 1, we have
the classical Gauss multiplication and Legendre duplication Theorems [2].
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