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Abstract. A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a
vertex in each color class joined to atleast a vertex in each other color class, such a vertex is called a
dominating vertex. The b-chromatic number of a graph G, denoted by b(G), is the maximal integer k
such that G may have a b-coloring by k colors. In this paper, we investigate the b-chromatic number of
Central graph, Middle graph, Total graph and Line graph of Triple Star graph, denoted by C(K1,n,n,n),
M(K1,n,n,n), T(K1,n,n,n) and L(K1,n,n,n), respectively.
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1. Introduction

Let G be a finite undirected graph with vertex set V (G) and edge set E(G) having no loops and

multiple edges. All graphs considered here are undirected. In this paper, the term coloring will
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be used to define vertex coloring of graphs. A proper coloring of a graph G is the coloring of the

vertices of G such that no two neighbors in G are assigned the same color. This paper deals

with the b-chromatic number of graphs derived by several different Constructions from a Triple

star graph.

The b-chromatic number ϕ(G) [5,7] of a graph G is the largest positive integer k such that G

admits a proper k-coloring in which every color class i contains atleast one vertex in each of the

other color classes. Such a coloring is called a b-coloring. This concept of b-chromatic number

was introduced in 1999 by Irving and Manlove [5], who proved that determining ϕ(G) is NP-hard

in general and polynomial for trees. Effantin and Kheddouci studied [2–4] the b-chromatic

number for the powers of Path, Cycle, Complete Binary Tree, and Complete Caterpillar.

It has been proved in [6] by showing that if G is a d-regular graph with girth 5 and without

cycles of length 6, then ϕ(G) = d+1. Recently, motivated by the works of Sandi Klavz̆ar and

Marko Jakovac [7], who proved that the b-chromatic number of cubic graphs is 4 expect for the

Petersen graph, K3,3, the prism over K3, and one more sporadic example with 10 vertices.

2. Preliminaries

Definition 2.1. The central graph C(G) of a graph is obtained by subdividing each edge of G

exactly once and joining all the non adjacent vertices of G.

Definition 2.2. The middle graph of G, denoted by M(G) is defined as follows: The vertex set

of M(G) is V (G)E(G). Two vertices x, y in the vertex set of M(G) are adjacent in M(G) in case

one of the following holds:

(a) x, y are in E(G) and x, y are adjacent in G.

(b) x is in V (G), y is in E(G), and x, y are incident in G.

Definition 2.3. Let G be a graph with vertex set V (G) and edge set E(G). The total graph of G

is denoted by T(G) and is defined as follows.

The vertex set of T(G) is V (G)∪E(G). Two vertices x, y in the vertex set of T(G) is adjacent in

T(G), if one of the following holds:

(a) x, y are in V (G) and x is adjacent to y in G.
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(b) x, y are in E(G) and x, y are adjacent in G.

(c) x is in V (G), y is in E(G) and x, y are adjacent in G.

Definition 2.4. Triple star K1,n,n,n is a tree obtained from the double star K1,n,n by adding a

new pendant edge of the existing n pendant vertices. It has 3n+1 vertices and 3n edges.

3. b-Chromatic Number of Central Graph of Triple Star Graph

Algorithm 3.1.

Input: The number “n” of K1,n,n,n.

Output: Assigning b-coloring to the vertices of C (K1,n,n,n).

begin

for i = 1 to n

{

V1 = {pi};

C(pi)= i+1;

}

{

V2 = {mi};

C(mi)= n+1+ i;

V3 = {yi};

C(yi)= 1;

V4 = {zi};

C(zi)= 1;

V5 = {qi};

C(qi)= i+1;

V6 = {xi};

C(xi)= i+2;
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}

V7 = {v};

C(v)= 1;

V =V1 ∪V2 ∪V3 ∪V4 ∪V5 ∪V6 ∪V7.

end.

Theorem 3.1. For a triple star graph (K1,n,n,n), n ≥ 1, the b chromatic number of the Central

Graph C(K1,n,n,n) is given by:

ϕ(C(K1,n,n,n))= 2n+1.

Proof. By the definition of Central graph, the Central Graph C(G) of the graph G is obtained

by subdividing each edge of G exactly once and joining all the non-adjacent vertices of G. Let

the edge vpi , pi qi and qimi (1≤ i ≤ n) be subdivided by the vertices xi (1≤ i ≤ n), yi (1≤ i ≤ n)

and zi (1≤ i ≤ n) in C(K1,n,n,n), respectively.

Clearly,

V (C(K1,n,n,n))= {v}∪ {pi : 1≤ i ≤ n}∪ {qi : 1≤ i ≤ n}∪ {mi : 1≤ i ≤ n}

∪ {xi : 1≤ i ≤ n}∪ {yi : 1≤ i ≤ n}∪ {zi : 1≤ i ≤ n}.

The vertices {pi : 1≤ i ≤ n} induce a clique of order n (say Kn) and for 1≤ i ≤ n the vertices v, qi

and mi induce a clique of order n+1 (say Kn+1) in C(K1,n,n,n), respectively.

Now consider the vertex set V (C(K1,n,n,n)) and the color class

C = {c1, c2, c3, . . . , cn, cn+1, cn+2, . . . , c2n, c2n+1}.

Assign a proper coloring to C(K1,n,n,n) by Algorithm 3.1.

Thus we have, ϕ(C(K1,n,n,n))≥ 2n+1.

Let us assume that ϕ(C(K1,n,n,n))> 2n+1.

Suppose ϕ(C(K1,n,n,n))= 2n+2. Since deg(xi)= deg(yi)= deg(zi)= 2.

The only possibility is to assign the color c2n+2 to the vertex set {pi : 1≤ i ≤ n} and {qi : 1≤ i ≤ n}.

But, if we assign the color c2n+2 to any vertex of {pi : 1≤ i ≤ n} and {qi : 1≤ i ≤ n}, an easy check

shows that, it will not produce a b-coloring.

Which is a contradiction. Therefore, assigning 2n+2 colors is impossible.
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Thus, we have, ϕ(C(K1,n,n,n))≤ 2n+1. Hence ϕ(C(K1,n,n,n))= 2n+1.

4. b-Chromatic Number of Middle Graph of Triple Star Graph

Algorithm 4.1.

Input: The number “n” of K1,n,n,n.

Output: Assigning b-coloring to the vertices of M (K1,n,n,n).

begin

for i = 1 to n

{

V1 = {xi};

C(xi)= i;

}

V2 = {v};

C(v)= n+1;

for i = 1 to n

{

V3 = {pi};

C(pi)= n+1;

V4 = {qi};

C(qi)= n+1;

V5 = {mi};

C(mi)= n+1;

}

for i = 1 to n−1

{

V6 = {yi};
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C(yi)= n;

}

C(yn)= 1;

for i = 1 to n−1

{

V7 = {zi};

C(zi)= 1;

}

C(zn)= n;

V =V1 ∪V2 ∪V3 ∪V4 ∪V5 ∪V6 ∪V7;

end.

Theorem 4.1. For a triple star graph (K1,n,n,n), n ≥ 4, the b chromatic number of the Middle

Graph M(K1,n,n,n) is given by:

ϕ(M(K1,n,n,n))= n+1.

Proof. By the definition of Middle graph, each edge vpi , pi qi and qimi (1≤ i ≤ n) in (K1,n,n,n)

are subdivided by the vertices xi , yi and zi in M(K1,n,n,n). The vertex set of Middle graph of

Triple star graph is defined as,

V (M(K1,n,n,n))= {v}∪ {pi : 1≤ i ≤ n}∪ {qi : 1≤ i ≤ n}∪ {mi : 1≤ i ≤ n}∪ {xi : 1≤ i ≤ n}

∪ {yi : 1≤ i ≤ n}∪ {zi : 1≤ i ≤ n}.

The vertices v, x1, x2, . . ., xn induce a clique of order n+1 (say Kn+1) in M(K1,n,n,n).

Now consider the vertex set V (M(K1,n,n,n)) and the color class C = {c1, c2, c3, . . ., cn, cn+1}.

Assign a proper coloring to M(K1,n,n,n) by Algorithm 4.1.

Thus we have, ϕ(M(K1,n,n,n))≥ n+1.

Let us assume that ϕ(M(K1,n,n,n))> n+1.

Suppose, ϕ(M(K1,n,n,n))= n+2, there must be atleast n+2 vertices of degree n+1 in M(K1,n,n,n),

all with distinct colors, and each adjacent to vertices of all of the other colors. But, then
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these must be the vertices {v, x1, x2, . . ., xn}, since these are only the vertices with degree

atleast n+ 1. Which is the contradiction. Therefore, n+ 2 colors is impossible. Thus, we

have, ϕ(M(K1,n,n,n))≤ n+1. Hence ϕ(M(K1,n,n,n))= n+1.

Remark 4.1. For any positive integer n for 1≤ n ≤ 3, ϕ(M(K1,n,n,n))= n+2.

5. b-Chromatic Number of Total Graph of Triple Star Graph

Algorithm 5.1.

Input: The number “n” of K1,n,n,n.

Output: Assigning b-coloring to the vertices of T(K1,n,n,n).

begin

for i = 1 to n

{

V1 = {xi};

C(xi)= i+1;

}

V2 = {v};

C(v)= 1;

for i = 1 to n−1

{

V3 = {pi};

C(pi)= i+2;

}

C(pn)= 2;

for i = 1 to n

{

V4 = {yi};
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C(yi)= i;

V5 = {mi};

C(mi)= i;

V6 = {qi};

C(qi)= i+1;

}

for i = 1 to n−1

{

V7 = {zi};

C(zi)= i+2;

}

C(zn)= 2;

V =V1 ∪V2 ∪V3 ∪V4 ∪V5 ∪V6 ∪V7;

end.

Theorem 5.1. For a triple star graph (K1,n,n,n), n ≥ 4, the b chromatic number of the Total

Graph T(K1,n,n,n) is given by:

ϕ(T(K1,n,n,n))= n+1.

Proof. By the definition of Total graph, each edge vpi , pi qi and qimi (1 ≤ i ≤ n) in (K1,n,n,n)

are subdivided by the vertices xi , yi and zi in T(K1,n,n,n). The vertex set of Total graph of Triple

star graph is defined as,

V (T(K1,n,n,n))= {v}∪ {pi : 1≤ i ≤ n}∪ {qi : 1≤ i ≤ n}∪ {mi : 1≤ i ≤ n}∪ {xi : 1≤ i ≤ n}

∪ {yi : 1≤ i ≤ n}∪ {zi : 1≤ i ≤ n}.

The vertices v, x1, x2, . . ., xn induce a clique of order n+1 (say Kn+1) in T(K1,n,n,n).

Now consider the vertex set V (T(K1,n,n,n)) and the color class C = {c1, c2, c3, . . ., cn, cn+1}.

Assign a proper coloring to T(K1,n,n,n) by Algorithm 5.1.

Thus we have, ϕ(T(K1,n,n,n))≥ n+1.
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Let us assume that ϕ(T(K1,n,n,n))> n+1. Suppose, ϕ(T(K1,n,n,n))= n+2, there must be atleast

n+2 vertices of degree n+1 in T(K1,n,n,n), all with distinct colors, and each adjacent to vertices

of all of the other colors. But, then these must be the vertices {v, x1, x2, . . ., xn}, since these are

only the vertices with degree at least n+1. Which is the contradiction. Therefore, n+2 colors is

impossible. Thus, we have, ϕ(T(K1,n,n,n))≤ n+1. Hence ϕ(T(K1,n,n,n))= n+1.

6. b-Chromatic Number of Line Graph of Triple Star Graph

Algorithm 6.1.

Input: The number “n” of K1,n,n,n.

Output: Assigning b-coloring to the vertices of L(K1,n,n,n).

begin

for i = 1 to n

{

V1 = {mi};

C(mi)= i;

}

{

V2 = {qi};

If i = odd;

C(qi)= 2;

If i = even;

C(qi)= 3;

}

{

V3 = {pi};

C(pi)= i;

}
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V =V1 ∪V2 ∪V3;

end.

Theorem 6.1. For a triple star graph (K1,n,n,n), n ≥ 3, the b chromatic number of the Line Graph

L(K1,n,n,n) is given by:

ϕ(L(K1,n,n,n))= n.

Proof. By the definition of Line graph, each edge of (K1,n,n,n) taken to be as vertex in L(K1,n,n,n).

The vertex set of Line graph of Triple star graph is defined as,

V (L(K1,n,n,n))= {xi : 1≤ i ≤ n}∪ {yi : 1≤ i ≤ n}∪ {zi : 1≤ i ≤ n}.

The vertices {x1, x2, . . ., xn} induce a clique of order n in L(K1,n,n,n) (say Kn).

Now consider the vertex set V (L(K1,n,n,n)) and the color class C = {c1, c2, c3, . . ., cn}.

Assign a proper coloring to L(k1,n,n,n) by Algorithm 6.1.

Thus we have, ϕ(L(K1,n,n,n))≥ n.

Let us assume that ϕ(L(K1,n,n,n))> n. Suppose, ϕ(L(K1,n,n,n))= n+1, there must be atleast n+1

vertices of degree n in L(K1,n,n,n), all with distinct colors, and each adjacent to vertices of all

of the other colors. But, then these must be the vertices {x1, x2, . . ., xn}, since these are only the

vertices with degree at least n. Which is the contradiction. Therefore, n+2 colors is impossible.

Thus, we have, ϕ(L(K1,n,n,n))≤ n. Hence ϕ(L(K1,n,n,n))= n.

Remark 6.1. For any positive integer n (1≤ n ≤ 2), ϕ(L(K1,n,n,n))= n+1.
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