Approximate Controllability of Nonlinear Stochastic Integrodifferential Third Order Dispersion System
Abstract
Keywords
Full Text:
PDFReferences
D. N. Chalishajar, R. K. George and A. K. Nandakumaran, Exact controllability of the third order nonlinear dispersion system, Journal of Mathematical Analysis and Applications 332 (2007), 1028 – 1044.
D. N. Chalishajar, Controllability of nonlinear integro-differential third order dispersion system, Journal of Mathematical Analysis and Applications 348 (2008), 480 – 486.
A. Debussche and J. Printems, Numerical simulation of the stochastic Korteweg-de Vries equation, Physica D 134 (1999), 200 – 226.
R. Herman, The stochastic, Damped Korteweg-de Vries equation (1990), Journal of Physics A: Mathematical and General 23 (1990), 1063 – 1084.
J.M. Jeong and H.H. Roh, Approximate controllability for semilinear retarded systems, Journal of Mathematical Analysis and Applications 321 (2006), 961 – 975.
J. Klamka, Stochastic controllability of linear systems with delay in control, Bulletin of the Polish Academy of Sciences 55 (2007), 23 – 29.
G. Lin, L. Grinberg and G.E. Karniadakis, Numerical studies of the stochastic Korteweg-de Vries equation, Journal of Computational Physics 213 (2006), 676 – 703.
X. Mao, Stochastic Differential Equations and Applications, Chichester, Horwood (1997).
P. Muthukumar and P. Balasubramaniam, Approximate controllability for semi-linear retarded stochastic systems in Hilbert spaces, IMA Journal of Mathematical Control and Information 26 (2009), 131 – 140.
P. Muthukumar and C. Rajivganthi, Approximate Controllability of stochastic nonlinear third order dispersion equation, International Journal of Robust and nonlinear Control (2014), doi:10.1002/rnc.2908.
B. Oksendal, Stochastic Differential Equations: An Introduction with Applications, Springer-Verlag, New York (1995).
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983).
D.L. Russell and B.Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM Journal on Control and Optimization 31 (1993), 659 – 676.
D.L. Russell, Exact controllability and stabilizability of the Korteweg-de Vries equation, Transactions of the American Mathematical Society 348 (1996), 3643 – 3672.
R. Sakthivel, N.I. Mahmudov and Y. Ren, Approximate controllability of the nonlinear third-order dispersion equation, Applied Mathematics and Computation 217 (2011), 8507 – 8511.
L. Shen and J. Sun, Approximate controllability of abstract stochastic impulsive systems with multiple time-varying delays, International Journal of Robust and Nonlinear Control, (2012) doi:10.1002/rnc.2789.
N.K. Tomar and N. Sukavanam, Exact controllability of semilinear third order dispersion equation, The Journal of Nonlinear Sciences and Applications 4 (2011), 308 – 314.
M. Wadati, Stochastic Korteweg-de Vries equation, Journal of the Physical Society of Japan 52 (1983), 2642 – 2648.
M. Wadati and Y. Akutsu, Stochastic Korteweg-de Vries equatiowith and without damping, Journal of the Physical Society of Japan 53 (1984), 3342 – 3350.
M. Wadati, Deformation of solitons in random media, Journal of the Physical Society of Japan 59 (1990), 4201 – 4203.
H. Washimi and T. Taniuti, Propagation of ion-acoustic solitary waves of small amplitude, Physical Review Letters 17 (1996), 996 – 998.
Y.C. Xie, Exact solutions for stochastic KdV equations, Physics Letters A 310 (2003), 161 – 167.
B.Y. Zhang, Exact boundary controllability of the KdV equations, SIAM Journal on Control and Optimization 37 (1999), 523 – 565.
H.X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM Journal on Control and Optimization 21 (1983), 551 – 565.
DOI: http://dx.doi.org/10.26713%2Fjims.v9i3.958
eISSN 0975-5748; pISSN 0974-875X
