Wiener, Hyper Wiener and Detour Index of Pseudoregular Graphs
Abstract
\(WW(G)\) is defined as \(WW(G)=\frac{1}{2} \sum\limits _{u\ne v}\left(d(u,v)+d^{2} (u,v)\right)\), where \(d^{2}(u,v)=d(u,v)^{2}\), and the Detour index \(D(G)\) is defined as \(D(G)=\sum\limits _{u\ne v}D(u,v)\), where \(D(u,v)\) denotes the longest distance from \(u\) to \(v\) in \(G\). In this paper, we computed the Wiener, Hyper Wiener, Detour index for a special graph namely, Pseudo-regular graph.
Keywords
Full Text:
PDFReferences
H. Wiener, Structural determination of Paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17 – 20.
I. Gutman and I.G. Zenkevich, Wiener index and vibrational energy, Z. Naturforsch. 57 (2002), 824 – 828.
B. Elenbogen and J.F. Fink, Distance distribution for graphs modeling computer networks, Discrete Applied Math. 155 (2007), 2612 – 2624.
D.J. Klein, I. Lukovits and I. Gutman, On the definition of the hyper-wiener index for cycle containing structures, J. Chem. Inf. Computer Sci. 35 (1995), 50 – 52.
I. Gutman, Relation between Hyper-Wiener and wiener index, Chem. Phys. Letter 364 (2002), 352 – 356.
G.G. Cash, Polynomial expressions for the Hyper wiener index of extended hydrocarbon networks, Comput. Chem. 25 (2001), 577 – 582.
A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (3) (2001), 211 – 249.
R.C. Entringer, D.E. Jackson and D.A. Synder, Distance in graphs, Czechoslovak Math. J. 26 (1976), 283 – 296.
G. Chartrand, H. Escuadro and P. Zhang, Detour distance in graphs, J. Combin. Math. Combin. Comput. 53 (2005), 75 – 94.
G. Chartrand, G.L. Johns and P. Zhang, On the detour number and geodetic number of a graph, Ars Combin. 72 (2004), 3 – 15.
A.P. Santhakumaran and S.V. Ullas Chandran, The vertex Detour Hull number of a graph, Discussiones Mathematicae Graph Theory 32 (2012), 321 – 330.
A. Joshi and B. Babujee, J. Wiener Polynomial for graph with cycles, ICMCS, 119 – 225 (2008).
V. Kaladevi and P. Backialakshmi, Detour distance polynomial of double star graph and Cartesian product of P2 and Cn, Antartica Journal of Mathematics 8 (2011), 399.
V. Kaladevi and P. Selvarani, Three polynomials in one matrix, Mathematical Sciences International Research Journal 1 (1).
D.S. Cao, Bounds on eigen values and Chromatic numbers, Linear Algebra Appl. 270 (1998), 1 – 13. [16] M.V. Diudea (ed.), Nanostructures, Novel Architecture, Nova, New York (2006).
M.V. Diudea, Nanomolecules and Nanostructures, Univ. Kragujevac (2010).
V. Kaladevi and S. Kavithaa, Fifteen Reverse topological indices of a graph in a single distance matrix, Jamal Academic Research Journal 7(1,2) (2013-2014), 303, 1 – 9.
V. Kaladevi and S. Kavithaa, On varieties of reverse Wiener like indices of a graph, International Journal of Fuzzy mathematics Archive 4 (1), 2320 – 3250, 37 – 46.
A.T. Balaban, D. Mills, O. Ivanciuc and S.C. Basak, Reverse Wiener indices, Croat. Chem. Acta 73 (2000), 923 – 941.
G. Rucker and C. Rucker, Symmetry aided computation of the detour matrix and the detour index, J. Chem Inf. Computer Sci. 38 (1998), 710 – 714.
I. Lukovits and M. Razinger, On calculation of the Detour index, J. Chem Inf. Computer Sci. 38 (1997), 283 – 286.
S. Nikolic, N. Trinajstic and Z. Mihalic, The Detour Matrix and the Detour index, in: J. Devillers and A.T. Balaban (eds.), Topological Indices and Related Descriptors in QSAR & QSPR Gordon and Breach, Amsterdam, 279 – 306 (1999).
M.L. Aimeiyu and F. Tian, On the spectral radius of graphs, Linear Algebra and its Applications 387 (2004), 41 – 49.
T. Reti, I. Gutman and D. Vukicovic, On Zagreb indices of pseudo-regular graphs, Journal of Mathematical Nanoscience 1 (1) (2011), 1 – 12.
B. Zhou and X.C. Cai, On Detour index, Match Communication in Mathematical and in Computer Chemistry 63 (2010), 199 – 210.
DOI: http://dx.doi.org/10.26713%2Fjims.v9i3.937
eISSN 0975-5748; pISSN 0974-875X
