About Atom Bond Connectivity and Geometric-Arithmetic Indices of Special Chemical Molecular and Nanotubes

Mohammad Reza Farahani, Mohamad Nazri Husin, Waqas Nazeer

Abstract


Among topological descriptors connectivity indices are very important and they have a prominent role in chemistry. Two useful of them are the geometric-arithmetic (GA) and atom-bond connectivity (ABC) indices and are defined as \(GA(G)=\sum\limits _{uv\in E(G)}\frac{2\sqrt{d_{u} d_{v} } }{d_{u} +d_{v} }\) and \(ABC(G)=\sum\limits _{e=uv\in E(G)}\sqrt{\frac{d_{u} +d_{v} -2}{d_{u} d_{v} } }\), in which \(d_u\) and \(d_v\) are the degrees of the vertices \(u\) and \(v\), respectively. n this paper we compute these connectivity topological indices for a special chemical molecular graph ``$Cas(C)$-$CaR(C)[m,n,p]$ Nanotubes Junction'' are given. The $Cas(C)$-$CaR(C)[m,n,p]$ Nanotubes Junction is a new nano-structure that was defined by M.V. Diudea, on based the new graph operations (Leapfrog Le and Capra Ca) on the cycle graph \(C_n\).

Keywords


Molecular graph; Nanotubes; geometric-arithmetic (GA) index, atom-bond connectivity (ABC) index

Full Text:

PDF

References


M.V. Diudea, Nanostructuri Periodice, Operations on Maps, Periodic Nanostructures 115-136 (2007).

M.V. Diudea (ed.), QSPR/QSAR Studies by Molecular Descriptors, NOVA, New York (2001).

M.V. Diudea, I. Gutman and L. Jäntschi, Molecular Topology, NOVA, New York (2002).

M.V. Diudea, M.S. Florescu and P.V. Khadikar, Molecular Topology and Its Applications, EFICON, Bucharest (2006).

M.V. Diudea, Phenylenic and naphthylenic tori, Fullerenes, Nanotubes and Carbon Nanostructures 10(4) (2002), 273 – 292.

M.R. Farahani and H. Hosseini, A new method for computing domination polynomials of graphs, Pacific Journal of Applied Mathematics 7(3) (2015), 1 – 14.

M.R. Farahani and M.P. Vlad, On the Schultz, Modified Schultz and Hosoya polynomials and derived indices of Capra-designed planar Benzenoids, Studia Universitatis Babes-Bolyai Chemia. 4 (2012), 55 – 63.

M.R. Farahani and M.P. Vlad, Computing first and second Zagreb index, first and second Zagreb polynomial of Capra-designed planar benzenoid series Can (C6), Studia Universitatis Babes-Bolyai Chemia. 58(2) (2013), 133 – 142.

M.R. Farahani and M.P. Vlad, Some connectivity indices of Capra-designed planar Benzenoid series Can (C6), Studia Universitatis Babes-Bolyai Chemia. 60(2) (2015), 251 – 258.

M.R. Farahani, K. Kato and M.P. Vlad, Second-sum-connectivity index of Capra-designed planar benzenoid series Can (C6), Studia Universitatis Babes-Bolyai Chemia. 58(2) (2013), 127 – 132.

M.R. Farahani, Second-sum-connectivity index of Capra-designed planar Benzenoid series Can (C6), Polymers Research Journal 7(3) (2013), 1 – 8.

M.R. Farahani, Computing ABC4 index of Capra-designed planar benzenoid series Cak (C6), Advances in Materials and Corrosion 1 (2012), 61 – 64.

M.R. Farahani, A new geometric-arithmetic index of a new family of Benzenoid molecular graph, Chemical Physics Research Journal 6(1) (2013), 13 – 19.

M.R. Farahani, The first and second Zagreb polynomials and their corresponding indices of Capradesigned of cycles, International Journal of Chemical Modeling 7(1) (2015), 43 – 52.

M.R. Farahani, On atom bond connectivity and geometric-arithmetic indices of Capra-designed of cycles, Pacific Journal of Applied Mathematics 6(2) (2014), 133 – 141.

M.R. Farahani, Some connectivity indices and Zagreb index of polyhex nanotubes, Acta Chim. Slov. 59 (2012), 779 – 783.

W. Gao, M. Nazri Husin, M.R. Farahani and M. Imran, On the edges version of atom-bond connectivity index of nanotubes, J. Comput. Theor. Nanosci. 13(10) (2016), 6733 – 6740.

W. Gao, M. Nazri Husin, M.R. Farahani and M. Imran, On the edges version of atom-bond connectivity and geometric arithmetic indices of nanocones CNCk[n], J. Comput. Theor. Nanosci. 13(10) (2016), 6741 – 6746.

W. Gao, M.R. Farahani, Sh. Wang and M. Nazri Husin, On the edge-version atom-bond connectivity and geometric arithmetic indices of certain graph operations, Applied Mathematics and Computation 308 (2017), 11 – 17.

Y. Gao, M.R. Farahani and W. Gao, A neighborhood union condition for fractional (k,n0,m)-critical deleted graphs, Transactions on Combinatorics 6(1) (2017), 13 – 19.

W. Gao and M.R. Farahani, Degree-based indices computation for special chemical molecular structures using edge dividing method, Applied Mathematics and Nonlinear Sciences 1(1) (2015), 94 – 117.

M. Randic, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975), 6609 – 6615.

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley, Weinheim (2000).

N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL (1992).

D. Vukicevic and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009), 1369.

L. Xiao, S. Chen, Z. Guo and Q. Chen, The geometric-arithmetic index of Benzenoid systems and Phenylenes, Int. J. Contemp. Math. Sciences 5 (45) (2010), 2225 – 2230.

H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 7 – 20.




DOI: http://dx.doi.org/10.26713%2Fjims.v10i1-2.545

eISSN 0975-5748; pISSN 0974-875X