### On Integer Additive Set-Valuations of Finite Jaco Graphs

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

B.D. Acharya, Set-valuations and their applications, MRI Lecture Notes in Applied Mathematics, No. 2, The Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad (1983).

J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, New York (1976).

N. Deo, Graph Theory with Application to Engineering and Computer Science, Prentice Hall of India, Delhi (1974).

K.A. Germina and N.K. Sudev, On weakly uniform integer additive set-indexers of graphs, Int. Math. Forum 8 (37) (2013), 1827–1834. doi: 10.12988/imf.2013.310188.

F. Harary, Graph Theory, Addison-Wesley (1969).

J. Kok, C. Susanth and S.J. Kalayathankal, A study on linear Jaco graphs, J. Inform. Math. Sci. 7 (2) (2015), 69–80.

J. Kok, P. Fisher, B. Wilkens, M. Mabula and V. Mukungunugwa, Characteristics of Jaco graphs, (J_1(a)), (a inmathbb{N}), arXiv: 1404.1714v1.

J. Kok, P. Fisher, B. Wilkens, M. Mabula and V. Mukungunugwa, Characteristics of finite Jaco graphs, (J_n(1)), (n inmathbb{N}), arXiv: 1404.0484v1.

M.B. Nathanson, Additive Number Theory, Inverse Problems and Geometry of Sumsets, Springer, New York (1996).

N.K. Sudev and K.A. Germina, On integer additive set-indexers of graphs, Int. J. Math. Sci. Eng. Appl. 8 (2) (2015), 11–22.

N.K. Sudev and K.A. Germina, A characterisation of weak integer additive set-indexers of graphs, J. Fuzzy Set Valued Anal. 2014 (2014), 1–6, doi: 10.5899/2014/jfsva-00189.

N.K. Sudev and K.A. Germina, Weak integer additive set-indexers of graph products, J. Inform. Math. Sci. 6 (1) (2014), 35-43.

N.K. Sudev and K.A. Germina, A note on the sparing number of graphs, Adv. Appl. Discrete Math. 14 (1) (2014), 51–65.

N.K. Sudev and K.A. Germina, A characterisation of strong integer additive set-indexers of graphs, Commun. Math. Appl. 5 (3) (2014), 101–110.

N.K. Sudev and K.A. Germina, Some new results on strong integer additive set-indexers of graphs, Discrete Math. Algorithms Appl. 7 (1) (2015), 1–11, doi: 10.1142/S1793830914500657.

N.K. Sudev and K.A. Germina, On certain arithmetic integer additive set-indexers of graphs, Discrete Math. Algorithms Appl. 7 (3) (2015), 1–15, doi: 10.1142/S1793830915500251.

N.K. Sudev and K.A. Germina, A study on topological integer additive set-labeling of graphs, Electron. J. of Graph Theory Appl. 3 (1) (2015), 70–84., doi: 10.5614/ejgta.2015.3.1.8.

N.K. Sudev and K.A. Germina, On integer additive set-sequential graphs, Int. J. of Math. Combin. 3 (2015), 125–133.

N.K. Sudev and K.A. Germina, Some new results on weak integer additive set-labelings of graphs, Int. J. Computer Appl. 128 (5) (2015), 1–5, doi: 10.5120/ijca2015906514.

N.K. Sudev and K.A. Germina, A study on topogenic integer additive set-labeled graphs, J. Adv. Res. Pure Math. 7 (3), 15–22, doi: 10.5373/jarpm.2230.121314.

N.K. Sudev and K.A. Germina, A study on arithmetic integer additive set-indexers of graphs, J. Adv. Res. Appl. Math. 8 (2) (2016), in press.

N.K. Sudev and K.A. Germina, A study on integer additive set-graceful graphs, J. Adv. Res. Pure Math. 8 (2) (2016), in press.

N.K. Sudev, K.P. Chithra and K.A. Germina, Integer additive set-filter graphs, Electron. J. Graph Theory Appl., to appear.

N.K. Sudev and K.A. Germina, A study on prime arithmetic integer additive set-indexers of graphs, communicated.

D.B. West, Introduction to Graph Theory, Pearson Education Inc. (2001).

DOI: http://dx.doi.org/10.26713%2Fjims.v8i2.408

eISSN 0975-5748; pISSN 0974-875X