### A Study on Linear Jaco Graphs

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

C. Ahlbach, J. Usatine and N. Pippenger, Efficient Algorithms for Zerckendorf Arithmetic, Fibonacci Quarterly 51 (13) (2013), 249-255.

J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press, London, (1976).

G. Chartrand and L. Lesniak, Graphs and Digraphs, CRC Press, 2000.

J.T. Gross and J. Yellen, Graph Theory and its Applications, CRC Press, 2006.

D. Kalman and R. Mena, The Fibonacci Number - Exposed, Mathematics Magazine 76 (3) (2003), 167-181.

J. Kok, P. Fisher, B. Wilkens, M. Mabula and V. Mukungunugwa, Characteristics of Finite Jaco Graphs, $J_n(1)$, $n in mathbb{N}$, arXiv: 1404.0484v1 [math.CO], 2 April 2014.

J. Kok, P. Fisher, B. Wilkens, M. Mabula and V. Mukungunugwa, Characteristics of Jaco Graphs, $J_infty(a)$, $ a in mathbb{N}$, arXiv: 1404.1714v1 [math.CO], 7 April 2014.

D.B. West, Introduction to Graph Theory, Pearson Education Incorporated, 2001.

E. Zeckendorf, Repreesentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bulletin de la Societe Royale des Sciences de Liege 41 (1972), 179-182.

DOI: http://dx.doi.org/10.26713%2Fjims.v7i2.291

eISSN 0975-5748; pISSN 0974-875X