### Vorticity and Stress Tensor

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

G.K. Batchelor., An Introduction to Fluid Dynamics, Cambridge University Press, 141 – 148 (2009), reprinted.

C.H. Berdahl and W.Z. Strang, Behavior of a vorticity influenced asymmetric stress tensor in fluid flow, Flight Dynamics Laboratory, Ohio, Final Report, 1 July 1985-29 May 1986.

H. Brenner, Beyond Navier-Stokes, International Journal of Engineering Science 54 (2012), 67 – 98.

H. Brenner, Navier-Stokes revisited, Physica A, Statistical Mechanics and its Applications 349 (2005), 60 – 132.

G. Buresti, A Note on Stokes’ Hypothesis, Acta Mechanica 226 (2015), 3555 – 3559.

S. Chapman and T.G. Cowling, The Mathematical Theory of Non Uniform Gases, Cambridge University Press, 3rd edition (1970).

A.J. Chorin and J.E. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer, 3rd edition, 19 – 20 (2000).

K.J. Cook, H. Fearn and P. Millonni, Fizeaus experiment and the Aharonov-Bohm effect, Am. J. Phys. 63 (8) (1995), 705 – 710.

G. Emanuel and B.M. Argrow, Linear dependence of the bulk viscosity on shock wave thickness, Phys. Fluids 6 (1994), 3203 – 3205.

V.C.A. Ferraro and C. Plumpton, An Introduction to Magneto Fluid Mechanics, Clarandon Press, Oxford (1966).

M. Gad-el-Hak, Questions in fluid mechanics: Stokes’ hypothesis for a Newtonian, isotropic fluid, J. Fluid Eng. T. ASME 117 (1995), 3 – 5.

S.M. Karim and L. Rosenhead, The second coefficient of viscosity of liquids and gases, Reviews of Modern Physics 24 (2) (1952), 108 – 116.

B. Lautrup, Physics of Continuous Matter Exotic and Everyday Phenomena in the Macroscopic World, Institute of Physics Publishing Ltd., 112 – 120 (2005).

J.C. Maxwell, On Physical lines of force, Part I: The theory of molecular vortices applied to magnetic phenomena, Philosophical Magazine and Journal of Science 21 (139) (1861), 161 – 175.

K.R. Rajagopal, A new development and interpretation to the Navier-Stokes fluid which reveals why the Stokes assumption is inapt, Int. J. Non Linear Mech. 50 (2013), 141–151.

L. Rosenhead, A discussion on the first and second coefficients of viscosities of fluids, Proc. R. Soc. Lond. A. Mat. 226 (1954), 1 – 69.

A. Rutherford, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey, 33 – 35 (2000).

K. Stierstadt and M. Liu, Maxwell’s stress tensor and the forces in magnetic liquids, ZAMM – Journal of Applied Mathematics and Mechanics/Zeitschriftfür Angewandte Mathematik und Mechanik 95 (1) (2015), 4 – 37.

G.G. Stokes, On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Camb. Philos. Soc. 8 (1845), 287 – 319.

P.A. Thompson, Compressible-Fluid Dynamics, 20-21, McGraw-Hill, New York (1972).

C. Truesdell, On the viscosity of fluids according to the kinetic theory, Zeitschrift fur Physic 131 (1952), 273 – 289.

C. Truesdell, The mechanical foundations of elasticity and fluid dynamics, Journal of Rational Mechanics and Analysis 1 (1952), 228 – 231.

M.J. Vedan, M.B. Rajeshwari Devi and Susan Mathew P., Maxwell stress tensor in hydrodynamics, IOSR Journal of Mathematics 11 (1) (2015), Ver. V, 58 – 60.

DOI: http://dx.doi.org/10.26713%2Fjims.v10i1-2.1061

eISSN 0975-5748; pISSN 0974-875X