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1. Introduction
Type-2 fuzzy sets were introduced by Zadeh [33] as an extension of type-1 fuzzy sets [32].

Type-2 fuzzy sets have membership functions as type-1 fuzzy sets. The advantage of type-2
fuzzy sets is that they are helpful in some cases where it is difficult to find the exact membership
functions for a fuzzy sets. There are wide variety of applications of type-2 fuzzy sets in science
and technology like computing with words [22], human resource management [13], forecasting of
time-series [18], clustering [1, 27], pattern recognition [5], fuzzy logic controller [31], industrial
application [7], simulation [28], neural network [4, 29], and solid transportation problem [21].
The concept of cartesian product of type-2 fuzzy sets was given by Hu et al. [16] as an extension
of type-1 fuzzy sets. The properties of membership grades of type-2 fuzzy sets, set-theoretic
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operations of such sets have been studied by Mizumoto et al. [23, 24]. The composition of type-2
relations as an extension of type-1 sup-star composition but this formula is only for minimum
type-2 t-norm has been discussed by Dubois et al. [8, 9, 10].

The motivation of this paper is to introduce semibalanced and balanced mappings in the
type-2 fuzzy sets. We also discussed the type-2 fuzzy f -invariant, type-2 fuzzy f -stable and
some of its properties.

A brief sketch of the paper is as follows: Section 2 introduces some basic definitions related
to the concept. We have defined type-2 fuzzy G-equivalence relation, type-2 fuzzy G-preorder
and type-2 fuzzy relation compatible on the groupoid in Section 3. Section 4 deals with the
results of images and preimages of type-2 fuzzy equivalences and congruences on a groupoid.
Section 5 describes the images and preimages of type-2 fuzzy G-equivalences and G-congruences
on a groupoid.

2. Preliminaries
Definition 2.1 ([20]). A type-2 fuzzy set Ã defined on the universe of discourse X is
characterized by a membership function µÃ(x) : X → F([0,1]) and is expressed by the following
set notation: Ã = {(x,µÃ(x)) : x ∈ X }. F([0,1]) denotes the set of all type-1 fuzzy sets that
can be defined on the set [0,1]. µÃ(x), itself is a type-1 fuzzy set for value of x ∈ X and
is characterized by a secondary membership function fx : Jx → [0,1]. Therefore, Ã can be
represented as: Ã = {〈x, {(u, fx(u)) : u ∈ Jx}〉 : x ∈ X }, where Jx ⊆ [0,1] is the set of all possible
primary membership functions corresponding to an element x. In discrete case, a type-2 fuzzy
set Ã can also be expressed in the following ways:

Ã =
{(

x,
∑

u∈Jx

fx(u)
u

)
: x ∈ X , u ∈ Jx ⊆ [0,1]

}
,

Ã = ∑
x∈X

∑
u∈Jx

fx(u)
u

x
.

Example 2.1. A type-2 fuzzy set defined on a finite universal set and finite set of primary
membership can be represented by a 3-dimensional picture given in Figure 1.

Let X = {1,2,3,4,5} be the universe of discourse and suppose J1 = {0.25,0.5,0.75,1} = J2 = J4,
J3 = {0.75,1}, J5 = {0.25,0.5,1} be the sets of primary membership for x = 1,2,3,4,5 respectively.
The secondary membership function associated with x = 1 is represented by a fuzzy set

µÃ(1)= 0.3
0.25

+ 0.5
0.5

+ 0.7
0.75

+ 0.6
1

.

This secondary membership function can also be viewed through the five vertical lines at points
(1,0.25), (1,0.5), (1,0.75) and (1,1) in the Figure 1. Similarly, we can define the secondary
membership function for x = 2,3,4,5. We have shown all secondary membership functions in
the following figure. Shaded portion is called the footprint of uncertainty.
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Figure 1. Type-2 Fuzzy Set

Definition 2.2 ([20]). Uncertainty in the primary memberships of a type-2 fuzzy set consists of
a bounded region that we call as the footprint of uncertainty and is denoted by FOU(Ã). It is
defined by FOU(Ã)= ⋃

x∈X
Jx. The footprint of uncertainty in the Example 2.1 is

FOU(Ã)= {0,0.25,0.5,0.75,1}.

Definition 2.3 ([20]). For every value x = x′, say, the 2-D plane whose axes are u and fx′(u)
is called the vertical slice. A secondary membership function is thus a vertical slice. It can be

represented by µÃ(x′)= ∑
u∈Jx′

fx′(u)
u

, Jx′ ⊆ [0,1], in which 0≤ fx′(u)≤ 1, x ∈ X .

The domain of a secondary membership function is called the primary membership of x and
the amplitude of a secondary membership function is called a secondary grade. In the above
equation, fx′(u) is a secondary grade.

Definition 2.4 ([16]). Let X and Y be two nonempty universes. Then a type-2 fuzzy set,
R ∈Map(X ×Y ,Map(J, I)) is called a type-2 fuzzy relation (T2 FR, in short) from X to Y .

Definition 2.5 ([16]). The cartesian product of two type-2 fuzzy sets is a T2 FR, which is defined
for all A ∈ Map(X ,Map(J, I)) and B ∈ Map(Y ,Map(J, I)), as (A×B)(x, y) = A(x)∧̃B(y). If J is
bounded, then we have the following special T2 FRs, for all x ∈ X and y ∈Y

Q̃(x, y)=
{

0̃, if x 6= y,
1̃, if x = y.

Definition 2.6 ([26]). Let f be a mapping from the type-2 fuzzy sets (X ,Map(J, I)) and
(Y ,Map(J, I)). If Q̃ is a type-2 fuzzy subset of Y , the inverse image f −1(Q̃) of Q̃ is the type-2
fuzzy subset of X defined by f −1(Q̃)(x)= Q̃( f (x)).
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If P̃ is a type-2 fuzzy subset of X , the image f (P̃) of P̃ is the type-2 fuzzy subset of Y defined by

f (P̃)(y)=


˜sup

t∈ f −1(y)
P̃(t), if f −1(y) 6=φ,

0̃, if f −1(y)=φ, y= f y(a)
a

∈Y .

3. Type-2 Fuzzy G-equivalence Relation

Type-2 fuzzy reflexive, symmetric and transitive relations were discussed in [16]. We extend
the definitions of reflexive relations and studied the T2FR compatible on the groupoid.

Definition 3.1 ([16]). Let Q̃ be a T2 FR on X . Then Q̃ is said to be

(1) reflexive if J is bounded and Q̃(x, x)= 1̃ for all x ∈ X .

(2) antireflexive if J is bounded and Q̃(x, x)= 0̃ for all x ∈ X .

(3) weakly reflexive if Q̃(x, y)v Q̃(x, x) and Q̃(y, x)v Q̃(x, x) for all x, y ∈ X .

(4) symmetric if Q̃(x, y)= Q̃(y, x).

(5) antisymmetric if J is bounded and Q̃ satisfies Q̃(x, y)= 0̃ or Q̃(y, x)= 0̃
for all x, y ∈ X (x 6= y).

(6) transitive if Q̃ ◦ Q̃ v Q̃, where Q̃ ◦ Q̃ is defined by Q̃ ◦ Q̃(x, y)= ˜sup
z∈X

{Q̃(x, z)∧̃Q̃(z, y)}.

Definition 3.2 ([11]). We have given below the definition of type-2 fuzzy G-reflexive relation
in addition to the already above defined definitions in [16]. Q̃ is said to be a type-2 fuzzy
G-reflexive if

(1) 0̃< Q̃(x, x)< 1̃;

(2) Q̃(x, y)v ˜inf
t∈X

Q̃(t, t) for all x 6= y in X .

Definition 3.3 ([11]). A type-2 fuzzy relation Q̃ in X is a type-2 fuzzy G-equivalence relation
in X if Q̃ is G-reflexive, symmetric and transitive in X .

Example 3.1. There are three groups of research scholars in a research institute. A type-2
fuzzy G-equivalence relation is produced by the doctoral committees according to the level of
research by the scholars. The quality of research is transformed to the following type-2 fuzzy
relation whose entries are linguistic terms:

Q̃ =


Good Marginal Below Average

Marginal Very Good Average

Below Average Average Outstanding
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These linguistic terms can be written in the form of type-2 fuzzy sets as follows:

Q̃ =



0.5
0.5

+ 0.6
0.6

0.1
0.1

+ 0.2
0.2

0.2
0.1

+ 0.3
0.2

0.1
0.1

+ 0.2
0.2

0.7
0.7

+ 0.8
0.8

0.1
0.3

+ 0.1
0.4

0.2
0.1

+ 0.3
0.2

0.1
0.3

+ 0.1
0.4

0.9
0.9

+ 1
1


Clearly, (i) 0̃< Q̃(x, x)< 1̃.

(ii) Q̃(x, y)v ˜inf
t∈X

Q̃(t, t) for all x 6= y in X .

Therefore, Q̃ is a type-2 fuzzy G-reflexive relation.

Again, Q̃(x, y)= Q̃(y, x) for all x, y ∈ X .

Therefore, Q̃ is a type-2 fuzzy symmetric relation.

Now, Q̃ ◦ Q̃ =



0.2
0.5

+ 0.2
0.6

0.1
0.1

+ 0.2
0.2

0.1
0.1

+ 0.1
0.2

0.1
0.1

+ 0.2
0.2

0.1
0.7

+ 0.1
0.8

0.1
0.3

+ 0.1
0.4

0.1
0.1

+ 0.1
0.2

0.1
0.3

+ 0.1
0.4

0.1
0.9

+ 0.1
1


.

Thus, Q̃ ◦ Q̃ v Q̃.

Hence, Q̃ is a type-2 fuzzy transitive relation.

Consequently, Q̃ is a type-2 fuzzy G-equivalence relation.

Remark 3.1. The type-2 fuzzy G-reflexive relation helps us to calculate type-2 fuzzy G-

equivalence relation without the loss of generality of having Q̃(x, x)= 1̃= 1
1

on X .

Definition 3.4. If a T2 FR Q̃ in X is a type-2 fuzzy G-reflexive and transitive, then Q̃ is called
a type-2 fuzzy G-preorder in X .

Remark 3.2. By Q̃n, n = 1,2,3, . . . we mean Q̃ ◦ Q̃ ◦ · · · ◦ Q̃ (n factors).

Theorem 3.1. If Q̃ is a type-2 fuzzy G-preorder in X , then Q̃n = Q̃, n = 1,2,3, . . ..

Proof. It follows from the transitivity property that

Q̃ ◦ Q̃ v Q̃ (1)

On the other hand,

Q̃ ◦ Q̃(x, y)= ˜sup
t∈X

{Q̃(x, t)∧̃Q̃(t, y)}

w Q̃(x, x)∧̃Q̃(x, y)
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⇒ Q̃ ◦ Q̃(x, y)w Q̃(x, y) ∀ x, y ∈ X .

Therefore,

Q̃ ◦ Q̃ w Q̃ . (2)

From (1) and (2), we get Q̃ ◦ Q̃ = Q̃.

Similarly, Q̃ ◦ Q̃ ◦ Q̃ = Q̃.

Therefore, Q̃n = Q̃.

Definition 3.5. Let Q̃ be a type-2 fuzzy relation on the groupoid D. Q̃ is compatible on D if
Q̃(ac,bd)≥ Q̃(a,b)∧̃Q̃(c,d) for all a,b, c,d ∈ D.

A compatible type-2 fuzzy equivalence relation on a groupoid is a type-2 fuzzy congruence.

Definition 3.6. Let Q̃ be a type-2 fuzzy relation on the type-2 fuzzy set X with 0̃< α̃≤ 1̃. Q̃ is
a type-2 fuzzy stronger G-reflexive on X if Q̃(a,a)= α̃ and Q̃(a,b)≤ α̃ for all a,b ∈ X .

Definition 3.7. A type-2 fuzzy stronger G-reflexive, symmetric and transitive relation on X is
a type-2 fuzzy stronger G-equivalence relation on X .

Remark 3.3. A type-2 fuzzy stronger G-equivalence relation on X is a particular case of type-2
fuzzy equivalence relation when α̃= 1̃. Every type-2 fuzzy stronger G-equivalence relation is a
type-2 G-equivalence relation.

Remark 3.4. We call a compatible type-2 fuzzy stronger G-equivalence (G-equivalence) relation
on a groupoid a stronger G-congruence (G-congruence).

4. Images and Preimages of Type-2 Fuzzy Equivalences and
Congruences on a Groupoid

Theorem 4.1. If Q̃ is a compatible type-2 fuzzy relation on the groupoid S and f is a groupoid
homomorphism from D×D into S×S, then f −1(Q̃) is a compatible type-2 fuzzy relation on D.

Proof. Let a,b, c,d ∈ D. Then we have,

f −1(Q̃)(ac,bd)= Q̃( f (ac,bd))

= Q̃( f (a,b), f (c,d))

≥ Q̃( f (a,b))∧̃Q̃( f (c,d))

⇒ f −1(Q̃)(ac,bd)≥ f −1(Q̃)(a,b)∧̃ f −1(Q̃)(c,d).

Hence, f −1(Q̃) is a compatible type-2 fuzzy relation on D.

Theorem 4.2. If Q̃ is a compatible type-2 fuzzy relation on the groupoid D and f is a groupoid
homomorphism from D×D into S×S, then f (Q̃) is a compatible type-2 fuzzy relation on S.
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Proof. Let u,v,w, r ∈ S.

Considering the case, when either f −1(u,v) or f −1(w, r) is empty.

We have, f (Q̃)(uw,vr)≥ 0̃.

Again, taking f −1(u,v) and f −1(w, r) non empty, we get,

f (Q̃)(uw,vr)= ˜sup
(x,x′)∈ f −1(uw,vr)

Q̃( f (x, x′))

≥ ˜sup
(ac,bd)∈ f −1(uw,vr)

Q̃( f (ac,bd))

≥ ˜sup
f (a,b)· f (c,d)=(u,v)(w,r)

[Q̃(a,b)∧̃Q̃(c,d)]

= ˜sup
f (a,b)=(u,v)

Q̃(a,b)∧̃ ˜sup
f (c,d)=(w,r)

Q̃(c,d)

= ˜sup
(a,b)∈ f −1(u,v)

Q̃(a,b)∧̃ ˜sup
(c,d)∈ f −1(w,r)

Q̃(c,d)

⇒ f (Q̃)(uw,vr)≥ f (Q̃)(u,v)∧̃ f (Q̃)(v, r)

⇒ f (Q̃)(uw,vr)≥ f (Q̃)(u,v)∧̃ f (Q̃)(v, r).

Hence, f (Q̃) is a compatible type-2 fuzzy relation on S.

The definition of semibalanced mapping in type-2 fuzzy sets is defined below:

Definition 4.1. Let X and Y be two non empty type-2 fuzzy sets. A mapping f : X ×X →Y ×Y
is called a semibalanced mapping, if

(i) given a ∈ X , there exists e ∈Y such that f
(

fx(u)
u

,
fx(u)

u

)
=

( f y(a)
a

,
f y(a)

a

)
;

(ii) f
(

fx(u)
u

,
fx(u)

u

)
=

( f y(a)
a

,
f y(a)

a

)
and f

(
fx(v)

v
,

fx(v)
v

)
=

( f y(b)
b

,
f y(b)

b

)
,

implies that f
(

fx(u)
u

,
fx(v)

v

)
=

( f y(a)
a

,
f y(b)

b

)
.

Example 4.1. Let X = {a,b, c} and Y = {1,2,3}. Define the mapping f from (X × X ,Map(J, I))
to (Y ×Y ,Map(J, I)) as follows:

f
(
1
1

,
0.9
0.9

)
= f

(
0.8
0.8

,
0.9
0.9

)
=

(
1
1

,
0.9
0.9

)
, f

(
0.9
0.9

,
1
1

)
= f

(
0.9
0.9

,
0.8
0.8

)
=

(
0.9
0.9

,
1
1

)
,

f
(
1
1

,
0.8
0.8

)
= f

(
0.8
0.8

,
1
1

)
= f

(
0.8
0.8

,
0.8
0.8

)
= f

(
1
1

,
1
1

)
=

(
1
1

,
1
1

)
and f

(
0.8
0.8

,
0.8
0.8

)
=

(
0.8
0.8

,
0.8
0.8

)
,

where X =
1
1

a
+

0.9
0.9

b
+

0.8
0.8

c
and Y =

1
1

1
+

0.9
0.9

2
+

0.8
0.8

3
, respectively. Then, f is a semibalanced mapping.

Definition 4.2. Let X and Y be two non empty type-2 fuzzy sets. A mapping f : X ×X →Y ×Y
is called a balanced mapping, if
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(i) f
(

fx(u)
u

,
fx(v)

v

)
=

( f y(a)
a

,
f y(b)

b

)
⇒ fx(u)

u
= fx(v)

v
,

(ii) f
(

fx(u)
u

,
fx(v)

v

)
=

( f y(b)
b

,
f y(c)

c

)
⇒ f (

fx(v)
v

,
fx(u)

u
)= (

f y(c)
c

,
f y(b)

b
),

(iii) f
(

fx(u)
u

,
fx(u)

u

)
=

( f y(a)
a

,
f y(a)

a

)
and f

(
fx(v)

v
,

fx(v)
v

)
=

( f y(d)
d

,
f y(d)

d

)

⇐⇒ f
(

fx(u)
u

,
fx(v)

v

)
=

( f y(a)
a

,
f y(d)

d

)
, where X =

fx(u)
u

p
+

fx(v)
v

q
, then p, q ∈ X , primary

membership of p is u and secondary membership is fx(u). Similarly, the primary
membership of q is v and secondary membership is fx(v).

Again, Y =
f y(a)

a

e
+

f y(b)
b

f
+

f y(c)
c

g
+

f y(d)
d

h
, where e, f , g,h ∈Y .

The following results can easily be verified.

(a) given x = fx(u)
u

∈ X , then there exists u = f y(a)
a

∈Y such that

f
(

fx(u)
u

,
fx(v)

v

)
=

( f y(a)
a

,
f y(a)

a

)
,

(b) f is a one-to-one mapping from X × X into Y ×Y ,

(c) Let f
(

fx(u)
u

,
fx(v)

v

)
=

( f y(a)
a

,
f y(b)

b

)
.

Given, z = fx(w)
w

∈ X , there exists tz1 =
f y(tz)

tz
∈ Y such that f

(
fx(u)

u
,

fx(w)
w

)
=

( f y(a)
a

,
f y(tz)

tz

)
and f

(
fx(w)

w
,

fx(v)
v

)
=

( f y(tz)
tz

,
f y(b)

b

)
.

Example 4.2. Let X = {a,b, c} and Y = {1,2,3}. Define the mapping f from (X × X ,Map(J, I))
to (Y ×Y ,Map(J, I)) as follows:

f
(
0.5
0.5

,
0.5
0.5

)
=

(
0.5
0.5

,
0.5
0.5

)
, f

(
0.3
0.3

,
0.3
0.3

)
=

(
0.3
0.3

,
0.3
0.3

)
, f

(
0.2
0.2

,
0.2
0.2

)
=

(
0.2
0.2

,
0.2
0.2

)
,

f
(
0.5
0.5

,
0.3
0.3

)
=

(
0.5
0.5

,
0.3
0.3

)
, f

(
0.3
0.3

,
0.5
0.5

)
=

(
0.3
0.3

,
0.5
0.5

)
, f

(
0.5
0.5

,
0.2
0.2

)
=

(
0.5
0.5

,
0.2
0.2

)
,

f
(
0.2
0.2

,
0.5
0.5

)
=

(
0.2
0.2

,
0.5
0.5

)
, f

(
0.3
0.3

,
0.2
0.2

)
=

(
0.3
0.3

,
0.2
0.2

)
, f

(
0.2
0.2

,
0.3
0.3

)
=

(
0.2
0.2

,
0.3
0.3

)
,

where X =
0.5
0.5

a
+

0.3
0.3

b
+

0.2
0.2

c
and Y =

0.5
0.5

1
+

0.3
0.3

2
+

0.2
0.2

3
respectively. Then, f is a balanced mapping.

Remark 4.1. A mapping f : X × X → Y ×Y is called a balanced mapping if and only if it is a
one-to-one semibalanced mapping.

Theorem 4.3. If f is a semibalanced map from type-2 fuzzy sets X × X into Y ×Y and Q̃
is a type-2 fuzzy stronger G-equivalence relation on Y . Then, f −1(Q̃) is a type-2 stronger G-
equivalence relation on X .
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Proof. Let a,b ∈ X and f
(

fx(u)
u

,
fx(v)

v

)
=

( f y(a)
a

,
f y(b)

b

)
f −1(Q̃)

(
fx(u)

u
,

fx(u)
u

)
= Q̃

(
f
(

fx(u)
u

,
fx(u)

u

))
= Q̃

( f y(a)
a

,
f y(a)

a

)
= α̃, for some p ∈Y .

Next take a 6= b ∈ X , and

f −1(Q̃)
(

fx(u)
u

,
fx(v)

v

)
= Q̃

(
f
(

fx(u)
u

,
fx(v)

v

))
= Q̃

( f y(a)
a

,
f y(b)

b

)
≤ α̃

⇒ f −1(Q̃)
(

fx(u)
u

,
fx(v)

v

)
≤ α̃.

Hence, f −1(Q̃) is a type-2 fuzzy stronger G-reflexive relation on X .

Again,

f −1(Q̃)
(

fx(u)
u

,
fx(v)

v

)
= Q̃

(
f
(

fx(u)
u

,
fx(v)

v

))
= Q̃

( f y(a)
a

,
f y(b)

b

)
= Q̃

( f y(b)
b

,
f y(a)

a

)
= Q̃

(
f
(

fx(v)
v

,
fx(u)

u

))
⇒ f −1(Q̃)

(
fx(u)

u
,

fx(v)
v

)
= f −1(Q̃)

(
fx(v)

v
,

fx(u)
u

)
.

Further,

( f −1(Q̃)◦ f −1(Q̃))
(

fx(u)
u

,
fx(v)

v

)
= ˜sup

c∈X

{
f −1(Q̃)

(
fx(u)

u
,

fx(w)
w

)
∧̃ f −1(Q̃)

(
fx(w)

w
,

fx(v)
v

)}
= ˜sup

c∈X

{
Q̃

(
f
(

fx(u)
u

,
fx(w)

w

))
∧̃Q̃

(
f
(

fx(w)
w

,
fx(v)

v

))}
= ˜sup

c∈X

{
Q̃

( f y(a)
a

,
f y(tz)

tz

)
∧̃Q̃

(
f
( f y(tz)

tz
,

f y(b)
b

))}
≤ ˜sup

g∈Y

{
Q̃

( f y(a)
a

,
f y(c)

c

)
∧̃Q̃

(
f
( f y(c)

c
,

f y(b)
b

))}
= (Q̃ ◦ Q̃)

( f y(a)
a

,
f y(b)

b

)
v Q̃

( f y(a)
a

,
f y(b)

b

)
, by transitivity of Q̃
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= Q̃
(
f
(

fx(u)
u

,
fx(v)

v

))
= f −1(Q̃)

(
fx(u)

u
,

fx(v)
v

)
⇒ ( f −1(Q̃)◦ f −1(Q̃))

(
fx(u)

u
,

fx(v)
v

)
v f −1(Q̃)

(
fx(u)

u
,

fx(v)
v

)
.

Therefore, f −1(Q̃) is a type-2 symmetric and transitive relation on X .

Consequently, f −1(Q̃) is a type-2 stronger G-equivalence relation on X .

Theorem 4.4. If Q̃ is a type-2 fuzzy stronger G-congruence relation on the groupoid S and f is
a groupoid homomorphism from D×D into S×S, which is an semibalanced map, then f −1(Q̃)
is a stronger G-congruence on D.

Proof. It follows from the above Theorems 4.1 and 4.3.

Definition 4.3. Let f be a map from type-2 fuzzy sets X ×X into Y ×Y . A type-2 fuzzy relation

Q̃ on X is f -invariant if f
(

fx(u)
u

,
fx(v)

v

)
= f

(
fx(u1)

u1
,

fx(v1)
v1

)
implies that Q̃

(
fx(u)

u
,

fx(v)
v

)
=

Q̃
(

fx(u1)
u1

,
fx(v1)

v1

)
.

A type-2 fuzzy relation Q̃ on X is weakly f -invariant if f
(

fx(u)
u

,
fx(v)

v

)
= f

(
fx(u1)

u1
,

fx(v)
v

)
implies that Q̃

(
fx(u)

u
,

fx(v)
v

)
= Q̃

(
fx(u1)

u1
,

fx(v)
v

)
.

Remark 4.2. If Q̃ is f -invariant, then Q̃ is weakly f -invariant, but not conversely.

Theorem 4.5. Let f be a semibalanced map from type-2 fuzzy sets X × X into Y ×Y . If Q̃ is a
weakly f -invariant type-2 fuzzy symmetric relation on X with Q̃ ◦ Q̃ = Q̃, then Q̃ is f -invariant.

Proof. Let a,b, c,b1, c1 ∈ X and e, f ∈Y .
Given, Q̃ is weakly f -invariant, so we get,

Q̃
(

fx(u)
u

,
fx(w)

w

)
= Q̃

(
fx(u1)

u1
,

fx(w)
w

)
,

Q̃
(

fx(w)
w

,
fx(v)

v

)
= Q̃

(
fx(w)

w
,

fx(v1)
v1

)
.

Now,

Q̃
(

fx(u)
u

,
fx(v)

v

)
= Q̃ ◦ Q̃

(
fx(u)

u
,

fx(v)
v

)
= ˜sup

c∈X

{
Q̃

(
f
(

fx(u)
u

,
fx(w)

w

))
∧̃Q̃

(
f
(

fx(w)
w

,
fx(v)

v

))}
= ˜sup

c∈X

{
Q̃

(
f
(

fx(u1)
u1

,
fx(w)

w

))
∧̃Q̃

(
f
(

fx(w)
w

,
fx(v1)

v1

))}
= Q̃ ◦ Q̃

(
fx(u1)

u1
,

fx(v1)
v1

)
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= Q̃
(

fx(u1)
u1

,
fx(v1)

v1

)
⇒ Q̃

(
fx(u)

u
,

fx(v)
v

)
= Q̃

(
fx(u1)

u1
,

fx(v1)
v1

)
.

Hence, Q̃ is f -invariant.

Theorem 4.6. Let f be a semibalanced map from type-2 fuzzy sets X × X into Y ×Y . If Q̃ is a
type-2 fuzzy stronger G-equivalence (G-equivalence) relation on X which is weakly f -invariant,
then Q̃ is f -invariant.

Proof. The result is deduced from the above Theorems 3.1 and 4.5.

Theorem 4.7. Let f be a semibalanced map from X × X onto Y ×Y . If Q̃ is a type-2 fuzzy
stronger G-equivalence relation on X , which is weakly f -invariant, then f (Q̃) is a type-2 fuzzy
stronger G-equivalence relation on Y .

Proof. Given that f is an onto semibalanced map, there exists, a,a′ ∈ X s.t.

f
(

fx(u)
u

,
fx(u′)

u′

)
=

( f y(a)
a

,
f y(a)

a

)
= f

(
fx(u)

u
,

fx(u)
u

)
.

By Theorem 4.6, Q̃ is f -invariant.

Then,

f (Q̃)
( f y(a)

a
,

f y(a)
a

)
= ˜sup

(x,x′)∈ f −1(e,e)
Q̃

(
fx(v)

v
,

fx(v′)
v′

)
= Q̃

(
fx(u)

u
,

fx(u)
u

)
.

= α̃

If e, f ∈Y , then there exists b, c ∈ X s.t.

f
(

fx(p)
p

,
fx(q)

q

)
=

( f y(b)
b

,
f y(c)

c

)
,

and

f
(

fx(q)
q

,
fx(p)

p

)
=

( f y(c)
c

,
f y(b)

b

)
.

Now,

f (Q̃)
( f y(b)

b
,

f y(c)
c

)
= ˜sup

(d,d′)∈ f −1(g,h)
Q̃

(
fx(r)

r
,

fx(s)
s

)
= Q̃

(
fx(p)

p
,

fx(q)
q

)
≤ α̃

⇒ f (Q̃)
( f y(b)

b
,

f y(c)
c

)
≤ α̃
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Thus, f (Q̃) is type-2 fuzzy stronger G-reflexive relation on Y .

f (Q̃)
( f y(a)

a
,

f y(b)
b

)
= ˜sup

(d,d′)∈ f −1(g,h)
Q̃

(
fx(r)

r
,

fx(s)
s

)
= Q̃

(
fx(u)

u
,

fx(v)
v

)
= Q̃

(
fx(v)

v
,

fx(u)
u

)
= f (Q̃)

( f y(b)
b

,
f y(a)

a

)
.

Hence, f (Q̃) is a type-2 fuzzy symmetric relation on Y .

( f (Q̃)◦ f (Q̃))
( f y(a)

a
,

f y(b)
b

)
= ˜sup

w′∈Y

{
f (Q̃)

( f y(a)
a

,
f y(d)

d

)
∧̃ f (Q̃)

( f y(d)
d

,
f y(b)

b

)}
= ˜sup

e′∈X

{
Q̃

(
fx(u)

u
,

fx(t)
t

)
∧̃Q̃

(
fx(t)

t
,

fx(v)
v

)}
= (Q̃ ◦ Q̃)

(
fx(u)

u
,

fx(v)
v

)
v Q̃

(
fx(u)

u
,

fx(v)
v

)
= f (Q̃)

( f y(a)
a

,
f y(b)

b

)
⇒ ( f (Q̃)◦ f (Q̃))

( f y(a)
a

,
f y(b)

b

)
v f (Q̃)

( f y(a)
a

,
f y(b)

b

)
.

Therefore, f (Q̃) is a type-2 fuzzy transitive relation in Y .

Consequently, f (Q̃) is a type-2 fuzzy stronger G-equivalence relation in Y .

Corollary 4.1. Let f be a balanced map from X × X onto Y ×Y . If Q̃ is a type-2 fuzzy stronger
G-equivalence relation on X , then f (Q̃) is a type-2 fuzzy stronger G-equivalence relation on Y .

Theorem 4.8. Let f be a semibalanced map and a groupiod homomorphism from D×D onto
S×S. If Q̃ is a type-2 fuzzy stronger G-congruence relation on D, which is weakly f -invariant,
then f (Q̃) is a stronger G-congruence on S.

Proof. The theorem can be proved by using the above Theorems 4.2 and 4.7.

Corollary 4.2. Let f be a balanced map and a groupiod homomorphism from D×D onto S×S.
If Q̃ is a type-2 fuzzy stronger G-congruence relation on D, which is weakly f -invariant, then
f (Q̃) is a stronger G-congruence on S.

5. Images and Preimages of Type-2 Fuzzy G-equivalences and
G-Congruences on A Groupoid

Theorem 5.1. Let f be a semibalanced map from X × X onto Y ×Y . If Q̃ is a type-2 fuzzy G-
equivalence relation on X , which is weakly f -invariant, then f (Q̃) is a type-2 fuzzy G-equivalence
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relation on Y with δ̃( f (Q̃))= δ̃(Q̃).

Proof. Given, f is a semibalanced map from X × X onto Y ×Y .

If e, f ∈Y , then there exists b, c ∈ X s.t.

f
(

fx(u)
u

,
fx(u)

u

)
=

( f y(a)
a

,
f y(a)

a

)
= f

(
fx(u)

u
,

fx(u′)
u′

)
and

f
(

fx(q)
q

,
fx(p)

p

)
=

( f y(c)
c

,
f y(b)

b

)
.

We then have,

f (Q̃)
( f y(a)

a
,

f y(a)
a

)
= ˜sup

(x,x′)∈ f −1(e,e)
Q̃

(
fx(v)

v
,

fx(v′)
v′

)
= Q̃

(
fx(u)

u
,

fx(u)
u

)
> 0̃

and

f (Q̃)
( f y(a)

a
,

f y(b)
b

)
= ˜sup

(d,d′)∈ f −1(g,h)
Q̃

(
fx(r)

r
,

fx(s)
s

)
= Q̃

(
fx(u)

u
,

fx(v)
v

)
≤ δ̃(Q̃)

= ˜inf
a∈X

Q̃
(

fx(u)
u

,
fx(u)

u

)
= ˜inf

z∈Y
f (Q̃)

( f y(p)
p

,
f y(p)

p

)
= δ̃( f (Q̃))

⇒ f (Q̃)
( f y(a)

a
,

f y(b)
b

)
≤ δ̃( f (Q̃))

Thus, f (Q̃) is a type-2 fuzzy G-reflexive relation on Y with δ̃(Q̃)= δ̃( f (Q̃)). Again,

f (Q̃)
( f y(a)

a
,

f y(b)
b

)
= ˜sup

(d,d′)∈ f −1(g,h)
Q̃

(
fx(r)

r
,

fx(s)
s

)
= Q̃

(
fx(u)

u
,

fx(v)
v

)
= Q̃

(
fx(v)

v
,

fx(u)
u

)
⇒ f (Q̃)

( f y(a)
a

,
f y(b)

b

)
= f (Q̃)

( f y(b)
b

,
f y(a)

a

)
.

Hence, f (Q̃) is a type-2 fuzzy symmetric relation on Y .
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Further,

( f (Q̃)◦ f (Q̃))
( f y(a)

a
,

f y(b)
b

)
= ˜sup

w′∈Y

{
f (Q̃)

( f y(a)
a

,
f y(d)

d

)
∧̃ f (Q̃)

( f y(d)
d

,
f y(b)

b

)}
= ˜sup

e′∈X

{
Q̃

(
fx(u)

u
,

fx(t)
t

)
∧̃Q̃

(
fx(t)

t
,

fx(v)
v

)}
= (Q̃ ◦ Q̃)(

fx(u)
u

,
fx(v)

v
)

v Q̃
(

fx(u)
u

,
fx(v)

v

)
= f (Q̃)

( f y(a)
a

,
f y(b)

b

)
⇒ ( f (Q̃)◦ f (Q̃))

( f y(a)
a

,
f y(b)

b

)
v f (Q̃)

( f y(a)
a

,
f y(b)

b

)
.

Therefore, f (Q̃) is a type-2 fuzzy transitive relation in Y .
Consequently, f (Q̃) is a type-2 fuzzy G-equivalence relation on Y .

Corollary 5.1. Let f be a balanced map from X × X onto Y × Y . If Q̃ is a type-2 fuzzy
G-equivalence relation on X , then f (Q̃) is a type-2 fuzzy G-equivalence relation on Y with
δ̃( f (Q̃))= δ̃(Q̃).

Theorem 5.2. If f is a groupoid homomorphism and a semibalanced map from D ×D onto
S×S. If Q̃ is a type-2 fuzzy G-congruence relation on D, which is weakly f -invariant, then f (Q̃)
is a G-congruence on S with δ̃( f (Q̃))= δ̃(Q̃).

Proof. The proof is similar to the above Theorems 4.2 and 5.1.

Corollary 5.2. If f is a groupoid homomorphism and a balanced map from D×D onto S×S.
If Q̃ is a type-2 fuzzy G-congruence relation on D, which is weakly f -invariant, then f (Q̃) is a
G-congruence on S with δ̃( f (Q̃))= δ̃(Q̃).

Definition 5.1. Let Q̃ be a type-2 fuzzy relation on Y and let f be a map from X ×X into Y ×Y .
We say Q̃ is f -stable, if given that a 6= b ∈ X , and e ∈Y such that

f
(

fx(u)
u

,
fx(v)

v

)
=

( f y(a)
a

,
f y(a)

a

)
implies that

Q̃
(
f
(

fx(u)
u

,
fx(v)

v

))
≤ Q̃

(
f
(

fx(w)
w

,
fx(w)

w

))
, for all c ∈ X .

Example 5.1. Consider a mapping f from (X×X ,Map(J, I)) to (Y×Y ,Map(J, I)) of Example 4.1.
We have defined the two type-2 fuzzy relations Q̃ and R̃ on Y as follows:

Q̃
(
1
1

,
1
1

)
= 0.5

0.5
+ 0.6

0.6
, Q̃

(
0.9
0.9

,
0.9
0.9

)
= Q̃

(
0.8
0.8

,
0.8
0.8

)
= 0.7

0.7
+ 0.8

0.8
, Q̃

(
1
1

,
0.9
0.9

)
= 0.3

0.3
+ 0.4

0.4
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and

R̃
(
1
1

,
1
1

)
= 0.1

0.1
+ 0.2

0.2
,

R̃
(
1
1

,
0.9
0.9

)
= R̃

(
1
1

,
0.8
0.8

)
= R̃

(
0.9
0.9

,
0.9
0.9

)
= 0.4

0.4
+ 0.5

0.5
,

R̃
(
0.9
0.9

,
1
1

)
= R̃

(
0.8
0.8

,
1
1

)
= R̃

(
0.9
0.9

,
0.8
0.8

)
= R̃

(
0.8
0.8

,
0.9
0.9

)
= 0.1

0.1
+ 0.2

0.2
.

We see that Q̃
(
f
(
1
1

,
0.8
0.8

))
= Q̃

(
1
1

,
1
1

)
= 0.5

0.5
+ 0.6

0.6
≤ Q̃

(
f
(
1
1

,
1
1

))
and R̃

(
f
(
1
1

,
0.8
0.8

))
= 0.1

0.1
+ 0.2

0.2
≤

R̃
(
f
(
1
1

,
1
1

))
. Hence, Q̃ and R̃ are f -stable. Q̃ is G-equivalence relation while R̃ is not a G-

equivalence relation.

Theorem 5.3. Let f be a semibalanced map from X × X into Y ×Y . If Q̃ is a type-2 fuzzy
G-equivalence relation on Y , which is f -stable. Then f −1(Q̃) is a type-2 fuzzy G-equivalence
relation on X with δ̃( f −1(Q̃))≥ δ̃(Q̃). Further, if f is onto, then δ̃( f −1(Q̃))= δ̃(Q̃).

Proof. Let a ∈ X . Then,

f −1(Q̃)
(

fx(u)
u

,
fx(u)

u

)
= Q̃

(
f
(

fx(u)
u

,
fx(u)

u

))
= Q̃

( f y(a)
a

,
f y(a)

a

)
≥ 0̃, for some p ∈Y .

Next we consider a 6= b ∈ X , then f
(

fx(u)
u

,
fx(v)

v

)
=

( f y(a)
a

,
f y(b)

b

)
.

f -stablility is applied when
f y(a)

a
= f y(b)

b
.

Therefore,

f −1(Q̃)
(

fx(u)
u

,
fx(v)

v

)
= Q̃

(
f
(

fx(u)
u

,
fx(v)

v

))
≤ δ̃(Q̃)

= ˜inf
e∈Y

Q̃
( f y(a)

a
,

f y(a)
a

)
⇒ f −1(Q̃)(

fx(u)
u

,
fx(v)

v
)≤ ˜inf

e∈Y
Q̃

( f y(a)
a

,
f y(a)

a

)
≤ ˜inf

a∈X
Q̃

(
f
(

fx(u)
u

,
fx(u)

u

))
= ˜inf

a∈X
f −1(Q̃)

(
fx(u)

u
,

fx(u)
u

)
= δ̃( f −1(Q̃))

⇒ f −1(Q̃)(
fx(u)

u
,

fx(v)
v

)≤ δ̃( f −1(Q̃)).

Thus, f −1(Q̃) is a type-2 fuzzy G-reflexive relation on X with δ̃( f −1(Q̃))≥ δ̃(Q̃).
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Again,

f −1(Q̃)
(

fx(u)
u

,
fx(v)

v

)
= Q̃

(
f
(

fx(u)
u

,
fx(v)

v

))
= Q̃

( f y(a)
a

,
f y(b)

b

)
= Q̃

( f y(b)
b

,
f y(a)

a

)
= Q̃

(
f
(

fx(v)
v

,
fx(u)

u

))
⇒ f −1(Q̃)

(
fx(u)

u
,

fx(v)
v

)
= f −1(Q̃)

(
fx(v)

v
,

fx(u)
u

)
.

Hence, f −1(Q̃) is a type-2 fuzzy symmetric relation on X .

Finally, let a,b ∈ X and f
(

fx(u)
u

,
fx(v)

v

)
=

( f y(a)
a

,
f y(b)

b

)
( f −1(Q̃)◦ f −1(Q̃))

(
fx(u)

u
,

fx(v)
v

)
= ˜sup

c∈X

{
f −1(Q̃)

(
fx(u)

u
,

fx(w)
w

)
∧̃ f −1(Q̃)

(
fx(w)

w
,

fx(v)
v

)}
= ˜sup

c∈X

{
Q̃

(
f
(

fx(u)
u

,
fx(w)

w

))
∧̃Q̃

(
f
(

fx(w)
w

,
fx(v)

v

))}
= ˜sup

c∈X

{
Q̃

( f y(a)
a

,
f y(tz)

tz

)
∧̃Q̃

(
f
( f y(tz)

tz
,

f y(b)
b

))}
≤ ˜sup

g∈Y

{
Q̃

( f y(a)
a

,
f y(c)

c

)
∧̃Q̃

(
f
( f y(c)

c
,

f y(b)
b

))}
= (Q̃ ◦ Q̃)

( f y(a)
a

,
f y(b)

b

)
v Q̃

( f y(a)
a

,
f y(b)

b

)
= Q̃

(
f
(

fx(u)
u

,
fx(v)

v

))
= f −1(Q̃)

(
fx(u)

u
,

fx(v)
v

)
⇒ ( f −1(Q̃)◦ f −1(Q̃))

(
fx(u)

u
,

fx(v)
v

)
v f −1(Q̃)

(
fx(u)

u
,

fx(v)
v

)
.

Hence, f −1(Q̃) is a type-2 fuzzy transitive relation on X .

Consequently, f −1(Q̃) is a type-2 fuzzy G-equivalence relation on X .

Corollary 5.3. Let f be a balanced map from X × X into Y ×Y . If Q̃ is a type-2 fuzzy G-
equivalence relation on Y , which is f -stable, then f −1(Q̃) is a type-2 fuzzy G-equivalence on X
with δ̃( f −1(Q̃))≥ δ̃(Q̃). Further, if f is onto, then δ̃( f −1(Q̃))= δ̃(Q̃).

Proof. The proof is similar to the above theorem.
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Theorem 5.4. Let f be a groupoid homomorphism and a semibalanced map from D×D into
S×S. If Q̃ is a type-2 fuzzy G-congruence relation on Y , then f −1(Q̃) is a G-congruence on X
with δ̃( f −1(Q̃))≥ δ̃(Q̃). Further, if f is onto, then δ̃( f −1(Q̃))= δ̃(Q̃).

Proof. The proof is similar to Theorems 4.1 and 5.3.

Corollary 5.4. Let f be a groupoid homomorphism and balanced map from D×D into S×S.
If Q̃ is a type-2 fuzzy G-congruence relation on Y , then f −1(Q̃) is a G-congruence on X with
δ̃( f −1(Q̃))≥ δ̃(Q̃). Further, if f is onto, then δ̃( f −1(Q̃))= δ̃(Q̃).

6. Conclusion
We have obtained basic results of type-2 fuzzy G-equivalences and G-congruences under the
semibalanced mappings. We have pointed out that the role of isomorphisms in classical algebraic
structure is analogous to that of semibalanced mappings for type-2 fuzzy G-equivalences and
G-congruences in this present note.
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