An Investigation of Optical Gain of Nanomaterial AlGaAsIn/InP under CTLSs in Optical Communications

Authors

  • Pyare Lal Department of Physics, Banasthali Vidyapith 304022, Rajasthan

DOI:

https://doi.org/10.26713/jamcnp.v7i3.1544

Keywords:

Modal type gain intensity, Optical type gain intensity, CTLSs, AlGaAsIn, InP

Abstract

The fundamental aim of this research paper has been to provide a critical role in the study of an investigation on optical gain enhancement of quaternary nanomaterial AlGaAsIn/InP under the CTLSs (Compressive Type Longitudinal Strains) in optical type telecommunication systems.

Downloads

Download data is not yet available.

References

P.A. Alvi, P. Lal, R. Yadav, S. Dixit and S. Dalela, Modal gain characteristics of GRINInGaAlAs/InP lasing nano-heterostructures, Superlattices and Microstructures 61 (2013), 1 – 12, DOI: 10.1016/j.spmi.2013.05.019.

P.A. Alvi, P. Lal, S. Dalela and M.J. Siddiqui, An extensive study on simple and GRIN SCH based In0.71Ga0.21Al0.08As/InP lasing heterostructure, Physica Scripta 85 (2012), 035402, DOI: 10.1088/0031-8949/85/03/035402.

P.A. Alvi, Strain-induced non-linear optical properties of straddling-type indium gallium aluminum arsenic/indium phosphide nanoscale-heterostructures, Materials Science in Semiconductor Processing 31 (2015), 106 – 115, DOI: 10.1016/j.mssp.2014.11.016.

W.W. Chow, Z. Zhang, J.C. Norman, S. Liu and J.E. Bowers, On quantum-dot lasing at gain peak with linewidth enhancement factor ®H í† 0, APL Photonics 5 (2020), 026101, DOI: 10.1063/1.5133075.

S.L. Chuang, Physics of Optoelectronic Devices, 2nd edition, Wiley, New York (2009), URL: https://www.wiley.com/en-us/Physics+of+Photonic+Devices%2C+2nd+Edition-p-9780470293195.

J.J. Geuchies, B. Brynjarsson, G. Grimaldi, S. Gudjonsdottir, W. van der Stam, W.H. Evers and A.J. Houtepen, Quantitative electrochemical control over optical gain in quantum-dot solids, ACS Nano 15 (2021), 377 – 386, DOI: 10.1021/acsnano.0c07365.

C. Henry, Theory of linewidth of semiconductor lasers, IEEE Journal of Quantum Electronics 18 (1982), 259 – 264, DOI: 10.1109/JQE.1982.1071522.

L. Ya. Karachinsky, I.I. Novikov, A.V. Babichev, A.G. Gladyshev, E.S. Kolodeznyi, S.S. Rochas, A.S. Kurochkin, Yu.K. Bobretsova, A.A. Klimov, D.V. Denisov, K.O. Voropaev, A.S. Ionov, V.E. Bougrov and A.Yu. Egorov, Optical gain in laser heterostructures with an active area based on an InGaAs/InGaAlAsSuperlattice, Optics and Spectroscopy 127(6) (2019), 1053 – 1056, DOI: 10.1134/s0030400x19120099.

P. Lal and P.A. Alvi, Strain induced gain optimization in type-I InGaAlAs/InP nanoscaleheterostructure, AIP Conference Proceedings 2220 (2020), 020060, DOI: 10.1063/5.0001124.

P. Lal, G. Bhardwaj, S. Kattayat and P.A. Alvi, Tunable anti-guiding factor and optical gain of InGaAlAs/InP nano-heterostructure under internal strain, Journal of Nano- and Electronic Physics 12(2) (2020), 02002 (3pp), DOI: 10.21272/jnep.12(2).02002.

P. Lal, R. Yadav, M. Sharma, F. Rahman, S. Dalela and P.A. Alvi, Qualitative analysis of gain spectra of InGaAlAs/InP lasing nano-heterostructure, International Journal of Modern Physics B 28(29) (2014), 1450206, DOI: 10.1142/S0217979214502063.

P. Lal, S. Gupta and P.A. Alvi, G-J study for GRIN InGaAlAs/InP lasing nano-heterostructures, AIP Conference Proceedings 1536 (2013), 53 – 54, DOI: 10.1063/1.4810096.

J. Piprek, J.K. White and A.J.S. Thorpe, What limits the maximum output power of longwavelength AlGaInAs/InP laser diodes?, IEEE Journal of Quantum Electronics 38(9) (2002), DOI: 10.1109/JQE.2002.802441.

A. Ramam and S.J. Chua, Features of InGaAlAs/InP heterostructures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16 (1998), 565, DOI: 10.1116/1.589864.

D.A. Rybalko, I.S. Polukhin, Y.V. Solov'ev, G.A. Mikhailovskiy, M.A. Odnoblyudov, A.E. Gubenko, D.A. Livshits, A.N. Firsov, A.N. Kirsyaev and A.A. Efremov, Model of mode-locked quantumwell semiconductor laser based on InGaAs/InGaAlAs/InP heterostructure, Journal of Physics: Conference Series 741 (2016), 012079, DOI: 10.1088/1742-6596/741/1/012079.

S.R. Selmic, T.-M. Chou, J.P. Sih, J.B. Kirk, A. Mantie, J.K. Butler, D. Bour and G.A. Evans, Design and characterization of 1.3-/spl mu/m AlGaInAs-InP multiple-quantum-well lasers, IEEE Journal on Selected Topics in Quantum Electronics 7(2) (2001), 340 – 349, DOI: 10.1109/2944.954148.

H. Vahala and A. Yariv, Semiclassical theory of noise in semiconductor lasers – Part II, IEEE Journal of Quantum Electronics 19 (1983), 1102 – 1109, DOI: 10.1109/JQE.1983.1071984.

S. Yoshitomi, K. Yamanaka, Y. Goto, Y. Yokomura, N. Nishiyama and S. Arai, Continuous-wave operation of a 1.3 ¹m wavelength npnAlGaInAs/InP transistor laser up to 90 ±C, Japanese Journal of Applied Physics 59 (2020), 042003, DOI: 10.35848/1347-4065/ab7ef2.

Downloads

Published

2020-12-31
CITATION

How to Cite

Lal, P. (2020). An Investigation of Optical Gain of Nanomaterial AlGaAsIn/InP under CTLSs in Optical Communications. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 7(3), 189–195. https://doi.org/10.26713/jamcnp.v7i3.1544

Issue

Section

Research Article