First Principle Investigation of Interlayer Interaction, Stacking Order and Layer Number Dependent Structural and Electronic Properties of Multi-Layered Boron Nitride (BN)

Authors

  • Sintayehu Mekonnen Hailemariam Department of Physics, College of Natural Sciences, Arbaminch University, Arbaminch

DOI:

https://doi.org/10.26713/jamcnp.v7i1.1360

Keywords:

Density functional theory, Interlayer interaction, Stacking order, Layer number, Energy band structure

Abstract

Layered Boron-Nitride (BN) consist of covalent in-plane bonding with van der Waals (vdW) interlayer interactions between layers. In this study, stacking order, interlayer-interaction and layer number dependent structural and electronic properties of multi-layered BN were studied using Density Functional Theory (DFT). The lattice constant, equilibrium interlayer distance and energy band structures for different interlayer distances and the number of layers were computed. The calculated result indicates that interlayer interaction and stacking order in a multi-layer limit could impact on its structural and electronic properties. In addition to this, the calculated energy band structure for the increasing number of layers indicates that as the number of layers increases the bandgap decreases. However, the nature of the bandgap remains direct. Moreover, the Partial Density of State (PDOS) analysis reveals that many contributions of states in the vicinity of Fermi level derived from Boron p-orbital followed by nitrogen p-orbital. The findings are bases for experimentalist to control structural and electronic properties of layered materials by manipulating its stacking patterns and layer numbers.

Downloads

Download data is not yet available.

References

X. Blase, A. Rubio, S. G. Louie and M. L. Cohen, Quasiparticle band structure of bulk hexagonal boron nitride and related systems, Physical Review B 51 (1995), 6868(8), DOI: 10.1103/PhysRevB.51.6868.

C.-R. Hsing, C. Cheng, J.-P. Chou, C.-M. Chang and C.-M. Wei, Van der Waals interaction in a boron nitride bilayer, New Journal of Physics 16 (11) (2014), 113015, DOI: 10.1088/1367-2630/16/11/113015.

C. Elias, P. Valvin, T. Pelini, A. Summerfield, C. J. Mellor, T. S. Cheng, L. Eaves, C. T. Foxon, P. H. Beton, S. V. Novikov, B. Gil and G. Cassabois, Direct band-gap crossover in epitaxial monolayer boron nitride, Nature Communications 10 (2019), 2639, DOI: 10.1038/s41467-019-10610-5.

Y. Fujimot, Formation and physical properties of h-BN atomic layers: a first-principles densityfunctional study, Journal of Advances in Materials Science and Engineering 6 (2676432) (2017), 6, DOI: 10.1155/2017/2676432.

A. Dorda, M. Ganahl, S. Andergassen, W. von der Linden and E. Arrigoni, Thermoelectric response of a correlated impurity in the nonequilibrium Kondo regime, Physical Review B 94 (2016), 125303(15), DOI: 10.1103/PhysRevB.94.245125.

X. Gao, Z. Zhou, Y. Zhao, S. Nagase, S. B. Zhang and Z. Chen, Comparative study of carbon and BN nanographenes, Journal Physical Chemistry 112 (33) (2008), 12677 – 12682, DOI: 10.1021/jp801679j.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, Quantum espresso: a modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter 21 (2009), 395502, DOI: 10.1088/0953-8984/21/39/395502.

D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang and C. Zhi, Boron nitride nanotubes and nano sheets, ACS Nano 4 (6) (2010), 2979 – 2993, DOI: 10.1021/nn1006495.

N. Govind, Y. A. Wang and E. A. Carter, Electronic-structure calculations by first-principles densitybased embedding of explicitly correlated systems, The Journal of Chemical Physics 110 (1999), 7677, DOI: 10.1063/1.478679.

S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics 132 (2010), 154104, DOI: 10.1063/1.3382344.

J. Son, S. Lee, S. J. Kim, B. C. Park, H.-K. Lee, S. Kim, J. H. Kim, B. H. Hong and J. Hong, Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor, Nature Communications 7 (2016), 13261, DOI: 10.1038/ncomms13261.

D. Jariwala, A. Srivastava and P. M. Ajayan, Graphene synthesis and band gap opening, Journal of Nanoscience and Nanotechnology 11 (8) (2011), 6621 – 6641, DOI: 10.1166/jnn.2011.5001.

S. Kristyan, Variational calculation with general density functional to solve the electronic Schrödinger equation directly for ground state: a recipe for self-consistent field solution, Journal of Theoretical and Applied Physics 7 (2013), 61, https://link.springer.com/article/10.1186/2251-7235-7-61.

I. Leven, T. Maaravi, I. Azuri, L. Kronik and O. Hod, Interlayer potential for graphene/h-BN heterostructures, Journal of Chemical Theory and Computation 12 (6) (2016), 2896 – 2905, DOI: 10.1021/acs.jctc.6b00147.

S. Mekonnen and P. Singh, Electronic structure and nearly room-temperature ferromagnetism in V-doped monolayer and bilayer MoS2, International Journal of Modern Physics B 32 (21) (2018), 1850231, DOI: 10.1142/S0217979218502314.

K. A. Mengle and E. Kioupakis, Impact of the stacking sequence on the band gap and luminescence properties of bulk, bilayer, and monolayer hexagonal boron nitride, APL Mater 7 (2019), 021106, DOI: 10.1063/1.5087836.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13 (1976), 5188, DOI: 10.1103/PhysRevB.13.5188.

M. Y. Ni and K. Wakabayashi, Stacking sequence dependence of electronic properties in doublelayer graphene heterostructures, Japanese Journal of Applied Physics 53 (6) (2014), 06JD03, DOI: 10.7567/JJAP.53.06JD03.

D. G. Papageorgiou, I. A. K. Robert and J. Young, Mechanical properties of graphene and graphene-based nano composites, Progress in Materials Science 90 (2017), 75 – 127, DOI: 10.1016/j.pmatsci.2017.07.004.

C. H. Park and S. G. Louie, Energy gaps and stark effect in boron nitride nanoribbons, Nano Letter 8 (8) (2008), 2200-2203, DOI: 10.1021/nl080695i.

R. M. Ribeiro and N. Peres, Stability of boron nitride bilayers: ground state energies, interlayer distances, and tight-binding description, Journal of Physical Review B 83 (23) (2011), 5312, DOI: 10.1103/PhysRevB.83.235312.

M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H. L. Zhang and A. Z. Moshfegh, Group 6 transition metal dichalcogenidenanomaterials: synthesis, applications and future perspectives, Nanoscale Horizons 3 (18), 90 – 204, DOI: 10.1039/C7NH00137A.

V. D. Sholl and J. A. Steckel, Density Functional Theory: A Practical Introduction, Theory, Modeling and Simulation series, Wiley, 256 pages (2009).

E. Schiavo, A. B. Muñoz-Garcí­a, V. Barone, A. Vittadini, M. Casarin, D. Forrer and M. Pavone, Tuning dispersion correction in DFT-D2 for metal-molecule interactions: A tailored reparameterization strategy for the adsorption of aromatic systems on Ag(1 1 1), Chemical Physics Letters 693 (2018), 28 – 33, DOI: 10.1016/j.cplett.2018.01.005.

J. R. Trail and R. J. Needs, Shape and energy consistent pseudo potentials for correlated electron systems, Journal of Chemical Physics 146 (20) (2017), 204107, DOI: 10.1063/1.4984046.

M. D. Ventra and S. T. Pantelides, Hellmann-Feynman theorem and the definition of forces in quantum time-dependent and transport problems, Journal of Physical Review B 61 (23) (2000), 16207, DOI: 10.1103/PhysRevB.61.16207.

J. Wang, F. Ma and M. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications, RSC Advances 7 (2017), 16801, DOI: 10.1039/C7RA00260B.

K. Watanabe and T. Taniguchi, Hexagonal boron nitride as a new ultraviolet luminescent, material and its application, International Journal of Applied Ceramic Technology 8 (5) (2011), 977 – 1253, DOI: 10.1111/j.1744-7402.2011.02626.x.

K. Watanabe, T. Taniguchi and H. Kanda, Direct band gap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nature Materials 3 (6) (2004), 404 – 409, DOI: 10.1038/nmat1134.

K. T. Winther and K. S. Thygesen, Band structure engineering in van der Waals heterostructures via dielectric screening: the G¢W method, 2D Materials 4 (2017), 025059(8), DOI: 10.1088/2053-1583/aa6531.

K. Zhang, Y. Feng, F. Wang, Z. Yanga and J. Wang, Two dimensional hexagonal boron nitride 2D-hBN): synthesis, properties and applications, Journal of Materials Chemistry C 5 (2017), 11992 – 12022, DOI: 10.1039/C7TC04300G.

N. D. Zhigadlo, Crystal growth of hexagonal boron nitride (h-BN) from Mg-B-N solvent system under high pressure, Journal of Crystal Growth 402 (2014), 308 – 311, DOI: 10.1016/j.jcrysgro.2014.06.038.

X. Zhong, R. G. Amorim, R. H. Scheicher, R. Pandeya and S. P. Karnac, Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride, Nanoscale 4 (2012), 5490 – 5498, DOI: 10.1039/C2NR31310C.

Downloads

Published

2020-03-24
CITATION

How to Cite

Hailemariam, S. M. (2020). First Principle Investigation of Interlayer Interaction, Stacking Order and Layer Number Dependent Structural and Electronic Properties of Multi-Layered Boron Nitride (BN). Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 7(1), 41–50. https://doi.org/10.26713/jamcnp.v7i1.1360

Issue

Section

Research Article