# Electron Acceleration by a Chirped Short Intense Laser Pulse in Presence of an External Axial Magnetic Field in Vacuum With Different Phase Values

## DOI:

https://doi.org/10.26713/jamcnp.v6i2.1279## Keywords:

Chirped short intense laser pulse, Magnetic field## Abstract

We investigated electron acceleration by a chirped short intense laser pulse in presence of an external magnetic field. The retained electron energy is very high with frequency chirp on increasing the value of chirp parameter and constant value of laser intensity parameter. Also, the retained electron energy increases on increment of laser intensity parameter. A linear frequency chirp \(\omega (t ) =\omega_0 (1-\alpha t)t\) was considered, here \(\omega _0\) is the laser frequency at \(z=0\) and \(\alpha\) is the frequency chirp parameter. On increasing the chirp parameters corresponding to the magnetic field with phase then the retained electron energy become so high. Also, we study the variation of the relativistic factor gamma \((\gamma)\) and the laser intensity parameter \((a _0 )\); also the variation of the relativistic factor gamma \(( \gamma )\) and the magnetic field \((b_0)\) with different values of the phase, \(\phi=0\), \(\pi /4\) and \(\pi/2\), respectively. As the time duration is increased the energy gain increased.

### Downloads

## References

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985), DOI: 10.1016/0030-4018(85)90120-8.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy and V. Malka, Nature (London) 431, 541 (2004), DOI: 10.1038/nature02963.

C. G. R. Geddes, Cs. Toth, J. Van Tilborg, E. Earey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary and W. P. Leemans, Nature (London) 431, 538 (2004), DOI: 10.1038/nature02900.

F. Sohbatzadeh, S. Mirzanejhad and M. Ghasemi, Phys. Plasmas 13, 123108 (2006), DOI: 10.1063/1.2405345.

F. Sohbatzadeh, S. Mirzanejhad and H. Aku, Phys. Plasmas 16, 023106 (2009), DOI: 10.1063/1.3077666.

M. D. Perry and G. Mourou, Science 264, 917 (1994), DOI: 10.1126/science.264.5161.917.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle and G. Gerber, Science 282, 919 (1998), DOI: 10.1126/science.282.5390.919.

B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K. R. Wilson, N. Schwentner, R. M. Whitnell and Y. Yan, Phys. Rev. Lett. 74, 3360 (1995), DOI: 10.1103/PhysRevLett.74.3360.

S. Mirzanejhad, F. Sohbatzadeh, M. Asri and K. Ghanbari, Phys. Plasmas 17, 033103 (2010), DOI: 10.1063/1.3339908.

A. G. Khachatryan, F. A. van Goor, J. W. J. Verschuur and K. J. Boller, Phys. Plasmas 12, 062116 (2005), DOI: 10.1063/1.1938167.

R. Bingham, U. De Angelis, M. R. Amin, R. A. Cairns and B. McNamara, Plasma Phys. Controlled Fusion 34, 557 (1992), DOI: 10.1088/0741-3335/34/4/014.

K. P. Singh, Appl. Phys. Letters 87, 254102 (2005), DOI: 10.1063/1.2149984.

C. H. Keitel, Phys. Rev. B 29, L873 (1996), DOI: 10.1088/0953-4075/29/24/003.

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, L. Shao, A. M. Sessler, E. Esarey, E. Moshkovich, Y. Nishida, N. Yugami, H. Ito, J. X. Wang and S. Scheid, J. Appl. Phys. 91, 856 (2001), DOI: 10.1063/1.1423394.

D. Umstadter, Phys. Plasmas 8, 1774 (2001), DOI: 10.1063/1.1364515.

J. Pang, Y. K. Ho, X. Q. Yuan, N. Cao, Q. Kong, P. X. Wang, L. Shao, E. H. Esarey and A. M. Sessler, Phys. Rev. E 66, 066501 (2002), DOI: 10.1103/PhysRevE.66.066501.

X. Wang, M. Krishnan, N. Saleh, H. Wang and D. Umstadter, Phys. Rev. Lett. 84, 5324 (2000), DOI: 10.1103/PhysRevLett.84.5324.

J.-X. Li, W.-P. Zang and J.-G. Tian, Appl. Phys. Letters 96, 031103 (2010), DOI: 10.1063/1.3294634.

F. Sohbatzadeh, S. Mirzanejhad and M. Ghasemi, Phys. Plasmas 13, 123108 (2006), DOI: 10.1063/1.2405345.

D. N. Gupta, H. J. Jang and H. Suk, J. Appl. Phys. 105, 106110 (2009), DOI: 10.1063/1.3117524.

R. Hajima and R. Nagai, Phys. Rev. Lett. 91, 024801 (2003), DOI: 10.1103/PhysRevLett.91.024801.

D. F. Gordon, B. Hafizi, R. F. Hubbard, J. R. Peñano, P. Sprangle and A. Ting, Phys. Rev. Lett. 90, 21500 (2003), DOI: 10.1103/PhysRevLett.90.215001.

J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, Phys. Rev. Lett. 78, 4773 (1997), DOI: 10.1103/PhysRevLett.78.4773.

Y. I. Salamin and N. M. Jisrawi, J. Phys. B: At. Mol. Opt. Phys. 47, 025601 (2014), DOI: 10.1088/0953-4075/47/2/025601.

D. N. Gupta and H. Suk, Laser Part. Beams 25, 31 – 36 (2007), DOI: 10.1017/S026303460707005X.

N. Kant, J. Rajput and A. Singh, High Energy Density Physics 26, 16 – 22 (2018), DOI: 10.1016/j.hedp.2017.11.003.

## Downloads

## Published

## How to Cite

*Journal of Atomic, Molecular, Condensed Matter and Nano Physics*,

*6*(2), 81–91. https://doi.org/10.26713/jamcnp.v6i2.1279

## Issue

## Section

## License

Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.