Synthesis and Characterization of Polyaniline, using Different Dopant, for Sensing Application of Pollutant Gases


  • Naseem Deshpande Department of Physics, Abeda Inamdar Senior College (University of Pune), Pune
  • Sanjay Chakane Arts, Science and Commerce College (University of Pune), Indapur
  • Ranjit R. Borude Abasaheb Garware College (University of Pune), Pune



Conducting polymer, FTIR, Gas Sensor, Dopant


Conducting polymers have been attracting considerable attention of researchers worldwide since 1980, due to their unique electrical, optical, thermal and magnetic properties. Among these polymers, polyaniline (PAni) is most popular as it can be synthesized for specific applications like rechargeable batteries, bio-sensors, corrosion paintings, organic electronic materials, EMI shielding, light emitting diodes etc. In this paper, we report synthesis of conducting polyaniline using different dopants such as HCL, HCLO\(_4\), HNO\(_3\) and H\(_2\)SO\(_4\) by oxidative chemical polymerization of aniline. The synthesized polyaniline materials were characterized by Fourier Transform Infra-red Spectroscopy (FTIR), Powder X-Ray Diffraction (XRD), Energy Dispersive X-ray analysis (EDAX) and Ultra-Violate (UV-VIS) Spectroscopy techniques.


Download data is not yet available.


T. Mäkelä, S. Pienimaa, T. Taka, S. Jussila and H. Isotalo, Synth. Met. 85 (1997), 1335.

S. Kuwabata, S. Masui and H. Yoneyama, Electrochim Acta 44 (1999), 459.

J.Q. Kan, X.H. Pan and C. Chen, Biosens Bioelectron. 19 (2004), 1635.

N. Ahmad and A.C. McDiarmid, Synth Met. 78 (1996), 103.

T.L. Rose, S. D'Antonio, M.H. Jillson, A.B. Kron, R. Suresh and F. Wang, Synth Met. 85 (1997), 1439.

S.Y. Park, M.S. Cho and H.J. Choi, Curr. Appl. Phys. 4 (2004), 581.

Y. Longa, Z. Chena, N. Wanga, J. Lib and M. Wanb, Phys B: Condens. Matter 82 (2004), 344.

H. Bai and G. Shi, Sensors 7 (2007), 267–307.

A.G. McDiarmid, Synth Met. 84 (1997), 27.

S. Bhadra, N.K. Singha and D. Khastgir, Synth Met. 156 (2006), 1148.

A.T. Ozylmaz, T. Tuken, B. Yazc and M. Erbil, M. Prog. Org. Coat. 52 (2005), 92.

T. Tuken, A.T. Ozyí­lmaz, B. Yazí­cí­ and M. Erbil, M. Appl. Surf. Sci. 236 (2004), 292.

E. Marie, R. Rothe, M. Antonietti and K.M. Landfester, Macromolecules 36 (2003), 3967.

K.R. Reddy, K.P. Lee and A.I. Gopalan, Colloids and Surfaces A: Physicochem. Eng. Aspects 320 (2008), 49–56.

í–. Yavuz, M.K. Ram, M. Aldissi, P. Poddar and S. Hariharan, Journal of Materials Chemistry 15 (2005), 810–817.

J. Jiang, L. Li and M. Zhu, Reactive and Functional Polymers 68 (2008), 57–62.

M.G. Cordova, R.M. Vequizo, R.M. Del Rosario, M.K.G. Odarve, B.R.B. Sambo, F.R.G. Bagsican and G.D. Leopoldo, Journal of Science and Technology 12 (2014), 68–85.

J. Jang, J. Bae and K. Lee, Polymer 46 (2005), 3677–3684.

Y. Geng, J. Li, Z. Sun, X. Jing and F. Wang, Synth. Met. 96 (1998), 1–6.

M. Amrithesh, S. Aravind, S. Jayalekshmi and R.S. Jayasree, J. Alloys Compd. 458 (2008), 532–535.

L.J. Bellamy, The Infra-red Spectra of Complex Molecules, 2nd edition, New York (1962).

E.T. Kang, K.G. Neoh and K.L. Tan, Prog. Polym. Sci. 23 (1998), 277–324.

J.M. Andanson and S.G. Kazarian, Macromol. Symp. 265 (2008), 195–204.




How to Cite

Deshpande, N., Chakane, S., & Borude, R. R. (2016). Synthesis and Characterization of Polyaniline, using Different Dopant, for Sensing Application of Pollutant Gases. Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 3(1), 27–33.



Research Article