Breathing Modes in Rotating Bose-Condensed Gas: An Exact Diagonalization Study

Mohd. Imran, M. A.H. Ahsan

Abstract


We present an exact diagonalization study of the breathing mode collective excitations for a rotating Bose-Einstein condensate of \(N = 10\) spinless bosons interacting via repulsive finiterange Gaussian potential and harmonically confined in quasi-two-dimension. The yrast state and the low-lying excited states are variationally obtained in given subspaces of the quantized total angular momentum \(L\) employing the beyond lowest Landau level approximation in slowly rotating regime with \(0\le L< 2N\). For a given \(L\), the low-energy eigenspectra (bands) are obtained in weakly to moderately interacting regime. Further, for a given interaction, the split in low-lying eigenenergies with increasing \(L\) is the precursor to spontaneous symmetry breaking of the axisymmetry associated with the entry of the first vortex. With increase in repulsive interaction, the value of the first breathing mode increases for stable total angular momentum states \(L = 0\) and \(N\), but decreases for intermediate \(0 < L < N\) metastable states. The position of the observed first breathing modes in the eigenspectrum remains unchanged as the interaction is varied over several orders of magnitude.

Keywords


Bose-Einstein condensate; Exact diagonalization; Beyond lowest Landau level (LLL) approximation; Breathing mode; Finite-range Gaussian interaction potential

Full Text:

PDF

References


M. H. Anderson, J. R. Ensher, M. R. Matthews, C.E. Wieman and E. A. Cornell, Science 269 (1995), 198.

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Phys. Rev. Lett. 75 (1995), 3969.

C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Phys. Rev. Lett. 75 (1995), 1687.

D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. 77 (1996), 420.

I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80 (2008), 885.

S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn and W. Ketterle, Nature (London) 392 (1998), 151.

L. P. Pitaevskii and A. Rosch, Phys. Rev. A 55 (1997), R853.

F. Chevy, V. Bretin, P. Rosenbusch, K. W. Madison and J. Dalibard, Phys. Rev. Lett. 88 (2002), 250402.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Rev. Mod. Phys. 71 (1999), 463.

C. R. McDonald, G. Orlando, J. W. Abraham, D. Hochstuhl, M. Bonitz, and T. Brabec, Phys. Rev. Lett. 111 (2013), 256801.

F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N. Wenz and S. Jochim, Science 332 (2011), 336.

E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, M. Gustavsson, M. Dalmonte, G. Pupillo and H.-C. Nägerl, Nature (London) 466 (2010), 597.

C.G. Bao, Y. Z. He, G. M. Huang and T. Y. Shi, Phys. Rev. A 65 (2002), 022508.

M. Olshanii, H. Perrin and V. Lorent, Phys. Rev. Lett. 105 (2010), 095302.

J. Christensson, C. Forssén, S. Åberg and S. M. Reimann, Phys. Rev. A 79 (2009), 012707.

R. A. Doganov, S. Klaiman, O. E. Alon, A. I. Streltsov and L. S. Cederbaum, Phys. Rev. A 87 (2013), 033631.

E. R. Davidson, J. Comput. Phys. 17 (1975), 87.

M. A. H. Ahsan and N. Kumar, Phys. Rev. A 64 (2001), 013608.

T. Nakajima and M. Ueda, Phys. Rev. Lett. 91 (2003), 140401.




DOI: http://dx.doi.org/10.26713%2Fjamcnp.v2i2.335

Refbacks

  • There are currently no refbacks.




RGN Journal Management System is fully compatible with all dialects of \(\rm\LaTeX\) and \(\sf MathML\)

  eISSN 2349-2716; pISSN 2349-6088