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Abstract. We present an exact diagonalization study of the breathing mode collective excitations
for a rotating Bose-Einstein condensate of N = 10 spinless bosons interacting via repulsive finite-
range Gaussian potential and harmonically confined in quasi-two-dimension. The yrast state and
the low-lying excited states are variationally obtained in given subspaces of the quantized total
angular momentum L employing the beyond lowest Landau level approximation in slowly rotating
regime with 0≤ L < 2N . For a given L, the low-energy eigenspectra (bands) are obtained in weakly to
moderately interacting regime. Further, for a given interaction, the split in low-lying eigenenergies
with increasing L is the precursor to spontaneous symmetry breaking of the axisymmetry associated
with the entry of the first vortex. With increase in repulsive interaction, the value of the first breathing
mode increases for stable total angular momentum states L = 0 and N , but decreases for intermediate
0< L < N metastable states. The position of the observed first breathing modes in the eigenspectrum
remains unchanged as the interaction is varied over several orders of magnitude.
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1. Introduction
Ever since the experimental realization of Bose-Einstein condensation (BEC) in ultra-cold
alkali atomic vapours in a harmonic trap [1–3], the study of collective excitations in such
systems has been an important subject of research in quantum many-body physics [4, 5].
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The decisive experimental control over the density, the effective dimensionality and the
atom-atom interaction strength [6], makes these systems an outstanding one to study subtle
quantum many-body effects, in particular, collective excitations. The breathing mode (monopole
oscillation or uniform radial expansion and contraction) is one of the most important collective
excitations [7,8] used as a diagnostic tool for many-body effects [9]. In recent years, a number of
theoretical studies have demonstrated that the quantum breathing mode is ideally suited to
estimate the atom-atom coupling strength, its kinetic and interaction energies and other such
observables [10], in a trapped atomic vapour system. This leads to a novel kind of spectroscopy
of trapped systems. For few-body systems realized in lower dimension [11,12], the behaviour of
breathing modes can be studied to a very high degree of precision [13,14]. An understanding
of the physics of few-body systems may then be extrapolated to larger systems to gain an
insight into the beyond mean-field physics of macroscopic ensembles. In this note, we follow this
approach and present an exact diagonalization study of the many-body effects of interaction
and rotation (with quantized L) on the dynamics of breathing modes.

2. Theoretical Formalism
We consider a system of N interacting spinless bosons each of mass M , trapped in a harmonic
potential V (r)= 1

2 M
(
ω2
⊥r2

⊥+ω2
z z2). The trap is subjected to an external rotation about the z-axis

with angular velocity Ω̃≡ Ω̃êz . The trapping potential V (r) is assumed to be highly anisotropic
with λz ≡ωz/ω⊥ À 1, so that the many-body dynamics along z-axis is frozen. The system is thus
effectively quasi-two-dimensional (quasi-2D) with x- y rotational symmetry. Choosing ~ω⊥ and
a⊥ =

√
~/Mω⊥ as units of energy and length respectively, the many-body Hamiltonian in the

co-rotating frame is given as
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where Ω = Ω̃/ω⊥ (≤ 1) is the dimensionless angular velocity and L (scaled by ~) is the z
projection of the total angular momentum operator. The inter-particle interaction U is described
by the Gaussian potential
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with width σ⊥ (scaled by a⊥) being the effective range of two-body interaction. The
dimensionless parameter g2 = 4πas/a⊥ measures the strength of the two-body interaction
with as being the s-wave scattering length for particle-particle collision. We assume that the
scattering length is positive (as > 0) so that the effective finite-range interaction is repulsive. The
above finite-range Gaussian interaction potential is expandable within a finite number of single-
particle basis and hence computationally feasible [15,16]. In the limit σ⊥ → 0, the Gaussian
potential in equation (2.2) reduces to the usual zero-range contact potential g2δ

(
ri −r j

)
.

To obtain the eigenenergies and the corresponding eigenstates, we employ exact
diagonalization of the Hamiltonian matrix in different subspaces of L using Davidson algorithm
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[17] with inclusion of higher Landau levels in constructing the many-body basis states [18]. It is
to be noted that for a many-body system under consideration here, the characteristic energy
scale for the interaction is determined by the dimensionless parameter Nas/a⊥ . Owing to the
increasing dimensionality of the Hilbert space with N making the computation impractical, we
vary as so as to achieve the value of Nas/a⊥ relevant to experimental situation [9].

3. Results and Discussions
We consider a system of N = 10 bosonic atoms of 87Rb in a quasi-2D harmonic trap with
confining frequency ω⊥ = 2π×220 Hz and the z-asymmetry parameter λz ≡ωz/ω⊥ =p

8. The
condensate has extension az =

√
~/Mωz in the z-direction and its dynamics along this axis is

taken to be completely frozen. Recent advancements in atomic physics has made it possible to
tune the low-energy atom-atom scattering length in ultra-cold atomic vapours using Feshbach
resonance [6]. Accordingly in the calculations presented here, the parameters of the two-body
interaction potential in equation (2.2) has been chosen as σ⊥ = 0.1 and as = 10a0, 100a0 and
1000a0 where, a0 = 0.05292 nm is the Bohr radius. The corresponding dimensionless parameter
g2 = 4πas/a⊥ defined above turns out to be 0.009151, 0.09151 and 0.9151, respectively.

(a) as = 10a0 (b) as = 100a0 (c) as = 1000a0

Figure 1. For N = 10 condensed bosons in a quasi-2D harmonic trap, the low-lying energy eigen-
spectrum (in units of ~ω⊥ ) versus the total angular momentum L (scaled by ~) for three different values
of repulsive interaction g2 (parametrized by as ) and σ⊥ = 0.1 in equation (2.2). In the present calculation,
up to thirty low-lying energy eigenstates have been found.

Following [13], we examine here the breathing modes in a rotating system of N = 10
bosons within the quantized total angular momentum regime 0 ≤ L < 2N . In Figure 1, we
present the low-energy eigenspectra (bands) for different total angular momentum L states
with three different values of interaction parameter g2 (parametrized by the scattering length
as). Eigenstates having the same total angular momenta constitute a L series (or bands). The
ith eigenstate of the L series is denoted as L i and the corresponding eigenenergy as E (L i). We
observe that corresponding to each L, the quasi-degenerate low-lying eigenenergies split to form
energy bands for weakly, Figures 1(a) and 1(b), to moderately interacting regime, Figure 1(c),
and the respective energy gaps associated with the low-lying eigenstates are reduced. We also
observe that for a given interaction strength, the low-lying eigenenergies further split with
increase in L to fill the energy gaps, as seen in Figures 1(b) and 1(c). This split in low-lying
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eigenenergies with increasing L leads to spontaneous symmetry breaking of the axisymmetry
associated with the entrance of the first vortex [19] in the angular momentum regime 0≤ L ≤ N .

Table 1. The eigenenergies of the L i states for N = 10 bosons with interaction parameters g2 = 0.09151
and σ⊥ = 0.1 in the total angular momentum regime 0≤ L ≤ 11. The L1 states are the yrast states (or
ground modes) and the L i states 02 , 12 , 23 , 34 , 45 , 56 , 68 , 79 , 811 , 913 , 1024 , 1127 are the observed first
breathing modes.

i L = 0 L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8 L = 9 L = 10 L = 11
1 24.5663 25.5663 26.5217 27.4976 28.4778 29.4524 30.4299 31.4062 32.3822 33.3583 34.3339 35.3340
2 26.5664 27.5217 26.5665 27.5216 28.4963 29.4774 30.4416 31.4309 32.4039 33.3830 34.3578 35.3459
3 26.5688 27.5447 28.4996 27.5670 28.5202 29.4952 30.4545 31.4361 32.4102 33.3864 34.3630 35.3563
4 28.4833 27.5668 28.5218 29.4781 28.5675 29.5184 30.4752 31.4545 32.4308 33.4009 34.3746 35.3582
5 28.5218 27.5687 28.5231 29.4977 30.4540 29.5679 30.4940 31.4716 32.4321 33.4109 34.3819 35.3648
6 28.5224 29.4607 28.5392 29.4990 30.4759 31.4315 30.5164 31.4926 32.4522 33.4261 34.3830 35.3721
7 28.5438 29.4832 28.5671 29.5051 30.4779 31.4440 30.5681 31.5143 32.4672 33.4313 34.3846 35.3769
8 28.5448 29.5007 28.5680 29.5204 30.4807 31.4523 32.4074 31.5678 32.4911 33.4482 34.3948 35.3819
9 28.5662 29.5018 30.4454 29.5228 30.4953 31.4557 32.4285 33.3834 32.5119 33.4627 34.4009 35.3826
10 28.5676 29.5221 30.4598 29.5349 30.4982 31.4619 32.4324 33.4047 32.5671 33.4894 34.4056 35.3848
11 28.5687 29.5228 30.4787 29.5661 30.5002 31.4734 32.4357 33.4060 34.3591 33.5091 34.4071 35.3921
12 30.4398 29.5233 30.4798 29.5683 30.5184 31.4759 32.4399 33.4106 34.3808 33.5658 34.4144 35.3986
13 30.4617 29.5365 30.4819 31.4223 30.5205 31.4779 32.4454 33.4138 34.3848 35.3347 34.4225 35.4007
14 30.4627 29.5416 30.4990 31.4448 30.5312 31.4903 32.4529 33.4257 34.3876 35.3601 34.4279 35.4064
15 30.4833 29.5444 30.4998 31.4557 30.5647 31.4960 32.4549 33.4306 34.3915 35.3635 34.4308 35.4127
16 30.4836 29.5659 30.5006 31.4578 30.5686 31.4977 32.4579 33.4322 34.4033 35.3718 34.4344 35.4203
17 30.4944 29.5676 30.5051 31.4591 32.4027 31.5161 32.4680 33.4331 34.4051 35.3814 34.4470 35.4268
18 30.4970 29.5684 30.5153 31.4771 32.4137 31.5171 32.4724 33.4371 34.4097 35.3831 34.4530 35.4304
19 30.5037 31.4247 30.5209 31.4779 32.4251 31.5278 32.4753 33.4407 34.4113 35.3867 34.4723 35.4317
20 30.5040 31.4407 30.5224 31.4791 32.4330 31.5629 32.4849 33.4480 34.4127 35.3883 34.4858 35.4450
21 30.5212 31.4456 30.5231 31.4803 32.4353 31.5687 32.4932 33.4530 34.4159 35.3914 34.4936 35.4517
22 30.5219 31.4601 30.5238 31.4815 32.4429 33.3831 32.4956 33.4552 34.4275 35.3954 34.5161 35.4699
23 30.5228 31.4614 30.5339 31.4916 32.4468 33.4038 32.5127 33.4624 34.4296 35.3993 34.5672 35.4854
24 30.5229 31.4625 30.5383 31.4957 32.4534 33.4078 32.5141 33.4677 34.4305 35.4033 36.3342 35.4926
25 30.5242 31.4676 30.5442 31.4980 32.4566 33.4090 32.5245 33.4709 34.4330 35.4069 36.3346 35.5146
26 30.5354 31.4769 30.5642 31.4986 32.4571 33.4129 32.5608 33.4794 34.4367 35.4092 36.3466 35.5669
27 30.5373 31.4798 30.5662 31.5006 32.4585 33.4253 32.5683 33.4899 34.4407 35.4098 36.3558 37.3287
28 30.5416 31.4822 30.5689 31.5040 32.4619 33.4262 34.3632 33.4937 34.4490 35.4123 36.3572 37.3336
29 30.5426 31.4834 32.4033 31.5088 32.4665 33.4297 34.3816 33.5085 34.4519 35.4203 36.3586 37.3344
30 30.5589 31.4912 32.4232 31.5188 32.4749 33.4340 34.3843 33.5114 34.4572 35.4246 36.3599 37.3352

To analyze the breathing modes, we present in Table 1 the low-lying eigenenergies E (L i)
corresponding to angular momentum states 0≤ L ≤ 11 with the interaction parameter value
g2 = 0.09151. The lowest energy state L1 corresponding to an L is referred to as the yrast
state (we would occasionally call it the ground mode). We observe that for the non-rotating
L = 0 states, E(02)−E(01)= 2.0001 (in units of ~ω⊥). The states 01 and 02 are, thus, taken to
be the ground mode (the yrast state) and the first breathing mode, respectively, for L = 0. It
was pointed out by Pitaevskii and Rosch [7] that a purely 2D bosonic system with zero-range
interaction exhibits breathing modes arising from SO(2,1) symmetry. The energy difference
between adjacent breathing mode levels is 2~ω⊥ . Although in the present work, the finite-range
Gaussian interaction potential has been used to replace the zero-range (δ-function) interaction,
the feature of 2~ω⊥ spacing is seen to persist in the energy eigenspectrum. Further, the 2~ω⊥
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spacing also appears for the rotating L > 0 states. For example, we find E(12)−E(11)= 1.9554
for L = 1, E(56)−E(51)= 1.9791 for L = 5 and E(1024)−E(101)= 2.0003 for L = 10. Thus, the
breathing modes existing in 2D systems with zero-range (δ-function) interaction potential may
also exist in our quasi-2D system with Gaussian interaction potential.

For the non-rotating L = 0 case (column 2 in the Table 1), the position of the first breathing
mode 02 is always immediately above the yrast state 01 . However as L increases, the positions
(labelled by the index i in column 1) of the first breathing modes are shifted to higher eigenstates,
forming a stair-like pattern of eigenenergies corresponding to the breathing modes. We further
observe from the Table 1 that the shifts in the positions of the first breathing modes are small for
states with L < N ; however, for the first vortex state with L = N = 10, we notice an appreciable
shift in the position of the first breathing mode. It might be due to rearrangement of bosons
on the nucleation of first central vortex. We have found that as the repulsive interaction is
increased over three orders of magnitude, the positions of the first breathing modes in the
energy eigenspectra for a given L, remain unchanged.

We also observe the second and third breathing modes with approximately 4~ω⊥ and 6~ω⊥
spacing. For example, the states 04 , 16 , 29 , 313 , 417 , 522 and 628 are the second breathing
modes. Similarly, the states 012 , 119 and 229 are the third breathing modes. Moreover as is the
case for the first breathing mode, for a given L, the positions of these higher breathing modes
are also found to be independent of the inter-particle interaction strength.

Table 2. For N = 10 condensed bosons, the values of the breathing modes EBM (in units of ~ω⊥) i.e.
the difference between the eigenenergies corresponding to the breathing state (L i ) and the yrast state
(L1), for three different values of the dimensionless interaction parameter g2 (parametrized by as ) with
Gaussian width σ⊥ = 0.1 in equation (2.2). With increase in repulsive interaction, the value of the first
breathing mode increases for stable total angular momentum states L = 0 and N , but decreases for
intermediate 0< L < N metastable states.

L EBM EBM (10a0) EBM (100a0) EBM (1000a0)
0 E(02)−E(01) 1.9999 2.0001 2.0111
1 E(12)−E(11) 1.9952 1.9554 1.7837
2 E(23)−E(21) 1.9978 1.9779 1.8062
3 E(34)−E(31) 1.9978 1.9805 1.9357
4 E(45)−E(41) 1.9976 1.9762 1.8287
5 E(56)−E(51) 1.9978 1.9791 1.8542
6 E(68)−E(61) 1.9976 1.9775 1.8620
7 E(79)−E(71) 1.9976 1.9772 1.8403
8 E(811)−E(81) 1.9976 1.9768 1.8331
9 E(913)−E(91) 1.9976 1.9764 1.7263
10 E(1024)−E(101) 2.0000 2.0003 2.0189
11 E(1127)−E(111) 1.9994 1.9947 1.9792

The results of the first breathing modes in subspaces of quantized L are presented in Table 2
for three different values of the interaction parameter g2 . We observe that for a given L, the
values of the first breathing mode calculated with weak interactions corresponding to the choice
g2 = 0.009151 and 0.09151 are very close (column 3 and 4) but significantly different from the
ones calculated for moderate interaction corresponding to the choice g2 = 0.9151 (column 5).
For the non-rotating L = 0 and the single-vortex L = N = 10 states, the values of the breathing
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modes increase albeit very weakly with increase in repulsive interaction. On the contrary for the
intermediate 0< L < N metastable states, the values of the breathing modes are appreciably
different from the non-rotating and single-vortex states and decreases significantly with increase
in repulsive interaction.

4. Conclusions
In conclusion, we have examined the breathing mode collective excitations of rotating Bose-
Einstein condensate with finite-range Gaussian interaction in a quasi-2D harmonic trap. By
exact diagonalization of the many-body Hamiltonian matrix in beyond lowest-Landau-level
approximation, the eigenenergies of the ground and the low-lying excited states are obtained
with total angular momenta 0 ≤ L < 2N , corresponding to slowly rotating regime. We have
presented the low-energy eigenspectra (bands) of the rotating system for three representative
values of different interacting regimes in subspaces of quantized L. For a given L, the
degeneracy of eigenenergies is lifted (forming energy bands) for weakly to moderately interacting
regime and correspondingly the energy gaps associated with the low-lying eigenstates are
reduced. We find that the repulsive interaction influences the values of the first breathing
modes in two different ways. For stable L = 0, N states the value of the first breathing mode
increases whereas for intermediate 0< L < N metastable states it decreases with increase in
repulsive interaction. For metastable states with angular momentum L < N , we observe a small
shift in the position of the first breathing mode in the eigenspectrum whereas for the vortex
state (L = N), the shift becomes significant. The position of the observed first breathing mode
in the eigenspectrum remains unchanged as the interaction is varied over several orders of
magnitude.
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