Study of Effects of Hot Phonon on Hot Electron Transport

Tarun Kumar Dey, Randhir Kumar


We study the influence of hot phonons on hot electron transport within the drain region is investigated. The ensemble Monte Carlo (MC) method self-consistently coupled with Poisson’s equation is used. This MC simulation is three-dimensional in k-space and two-dimensional in real space. The two-dimensional model is possible if physical quantities have no significant variation along the third direction. The phonon Boltzmann transport equation (BTE) is solved and the mean heat generation rate is calculated.


Hot electron; Monte Carlo simulation; Phonon population

Full Text:



Y. S. Ju and K. E. Goodson, Phonon scattering in silicon films with thickness of order 100 nm, Appl. Phys. Lett. 74(20), 3005 (1999), DOI: 10.1063/1.123994.

A. Svizhenko and M. P. Anantram, Role of scattering in nanotransistors, IEEE Trans. Electron Devices 50, 1459 (2003), DOI: 10.1109/TED.2003.813503.

W. Pötz and P. Kocevar, Electronic power transfer in pulsed laser excitation of polar semiconductors, Phys. Rev. B 28, 7040 (1983), DOI: 10.1103/PhysRevB.28.7040.

D. Y. Oberli, G. Böhm and G. Weimann, Role of interface optical phonons in cooling hot carriers in GaAs-AlAs quantum wells, Phys. Rev. B 47, 7630 (1993), DOI: 10.1103/PhysRevB.47.7630.

N. S. Mansour, Y. M. Sirenko, K. W. Kim, M. A. Littlejohn, J. Wang and J. P. Leburton, Carrier capture in cylindrical quantum wires, Appl. Phys. Lett. 67, 3480 (1995), DOI: 10.1063/1.115253.

S. Koch, T. Waho and T. Mizutani, InGaAs resonant tunneling transistors using a coupledquantum-well base with strained AlAs tunnel barriers, IEEE Trans. Electron Devices 41, 1498 (1994), DOI: 10.1109/16.310099.

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka and T. Ishibashi, Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors, IEEE Trans. Electron Devices 41, 1319 (1994), DOI: 10.1109/16.297724.

K. Tomizawa. Numerical Simulation of Submicron Semiconductor Devices, Artec House, London (1993).

M. Lundstrom, Fundamentals of Carrier Transport, Cambridge University Press (2000).

C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys. 55, 645 (1983), DOI: 10.1103/RevModPhys.55.645.

C. Hamaguchi, Quantum structures, in Basic Semiconductor Physics, Springer (2001), DOI: 10.1007/978-3-662-04656-2_8.

E. Pop, R. W. Dutton and K. E. Goodson, Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon ispersion, J. Appl. Phys. 96, 4998 (2004), DOI: 10.1063/1.1788838.

W. Cai, C. M. Marchetti and M. Lax, Nonequilibrium phonon effect on time-dependent relaxation of hot electrons in semiconductor heterojunctions, Phys. Rev. B 35, 1369 (1987), DOI: 10.1103/PhysRevB.35.1369.

Ole Christian Norum, Monte Carlo Simulation of Semiconductors–Program Structure and Physical Phenomena, Master’s Thesis, Norwegian University of Science and Technology, (2009),

J.-P. Gaspard, A. Pellegatti, F. Marinelli and C. Bichara, Peierls instabilities in covalent structures I. Electronic structure, cohesion and the Z = 8−N rule, Philos. Mag. B77, 727 (1998), DOI: 10.1080/13642819808214831.

J. Zhang, W. Cui, M. Juda, D. McCammon, R.L. Kelley, S. H. Moseley, C. K. Stahle and A. E. Szymkowiak, Non-Ohmic effects in hopping conduction in doped silicon and germanium between 0.05 and 1 K, Phys. Rev. B 57, 4472 – 4481 (1998), DOI: 10.1103/PhysRevB.57.4472.

J. C. Mather, Bolometer noise: nonequilibrium theory, Appl. Opt. 21, 1125 – 1129 (1982), DOI: 10.1364/AO.21.001125.

S. H. Moseley, J. C. Mather and D. McCammon, Thermal detectors as xray spectrometers, J. Appl. Phys. 56, 1257 – 1262 (1984), DOI: 10.1063/1.334129.

W. A. Little, The transport of heat between dissimilar solids at low temperatures, Can. J. Phys. 37, 334 – 349 (1959), DOI: 10.1139/p59-037.



  • There are currently no refbacks.

RGN Journal Management System is fully compatible with all dialects of \(\rm\LaTeX\) and \(\sf MathML\)

  eISSN 2349-2716; pISSN 2349-6088