Theoretical study of Scattering of Electron Transport

Randhir Kumar, Gun Sagar Yadav, Tarun Kumar Dey


The effect of the scattering-direction of hot electrons in the drain of ballistic \(n^{+}\)-\(i\)-\(n^{+}\) diodes is studied by a semi-classical Monte Carlo method. At low doping concentrations, the ionized impurity scattering has a weak influence on hot electron transport, although it is an elastic scattering. At sufficiently high doping concentrations on the other hand, the ionized impurity scattering enhances the backward flow of hot electrons, and severely degrades the peak of mean carrier-velocity in the channel and also the steady-state current. We argue that the scattering direction of hot electrons is the main reason behind these results.


Scattering; Monte Carlo method; Electron transport

Full Text:



2011 International Technology Roadmap for Semiconductors (2011 ITRS),

K. Natori, Scaling limit of the MOS transistor – A ballistic MOSFE, IEICE Trans. Electron. E84-C, 1029 (2001).

P. Palestri, D. Esseni, S. Eminente, C. Fiegna, E. Sangiorgi and L. Slemi, A Monte-Carlo study of the role of scattering in deca-nanometer MOSFETs, IEDM Tech. Dig. 2004, p. 605, DOI: 10.1109/IEDM.2004.1419234.

M. Fischetti and S. Laux, Monte-Carlo study of sub-band-gap impact ionization in small silicon field-effect transistors, IEDM Tech. Dig. 1995, p. 305, DOI: 10.1109/IEDM.1995.499202.

A. Svizhenko and M. P. Anantram, Role of scattering in nanotransistors, IEEE Trans. Electron Devices 50, 1459 (2003), DOI: 10.1109/TED.2003.813503.

T. Kurusu and K. Natori, Numerical study on Ballistic n+-i-n+ diode by Monte Carlo simulation: Influence of energy relaxation of hot electrons in drain region on Ballistic transport, Jpn. J. Appl. Phys. 45, 1548 (2006), DOI: 10.1143/JJAP.45.1548.

T. Gonzalez and D. Pardo, Physical models of ohmic contact for Monte Carlo device simulation, Solid-State Electron. 39, 555 (1996), DOI: 10.1016/0038-1101(95)00188-3.

K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices, Artech House (1993),

C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys. 55(3), 645 (1983), DOI: 10.1103/RevModPhys.55.645.

G. Donnarumma, J. Wozny and Z. Lisik, Monte Carlo simulation of bulk semiconductors for accurate calculation of drift velocity as a parameter for drift-diffusion, hydrodynamic models, Mater. Sci. Eng. B 165, 47 (2009), DOI: 10.1016/j.mseb.2009.01.027.

W. Shockley, Currents to conductors induced by a moving point charge, J. Appl. Phys. 9, 635 (1938), DOI: 10.1063/1.1710367.

S. Ramo, Currents induced by electron motion, Proc. IRE 27, 584 (1939), DOI: 10.1109/JRPROC.1939.228757.

H. Kosina, A method to reduce small-angle scattering in Monte Carlo device analysis, Transaction on Electron Devices 46, 1196 (1999), DOI: 10.1109/16.766884.

H. Kosina, Efficient evaluation of ionized-impurity scattering in Monte Carlo transport calculations, Physica Status Solidi A 163, 475 (1997), DOI: 10.1002/1521-396X(199710)163:2%3C475::AID-PSSA475%3E3.0.CO;2-E.

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, Springer, Berlin (1998), DOI: 10.1007/978-3-662-03770-6.

K. B. Ridley, Quantum Processes in Semiconductors, Oxford, London (1982).

E. Pop, R. W. Dutton and K. E. Goodson, Detailed heat generation simulations via the Monte Carlo method, in Simulation of Semiconductor Processes and Devices, Boston, MA (2003), p. 121, DOI: 10.1109/SISPAD.2003.1233652.



  • There are currently no refbacks.

RGN Journal Management System is fully compatible with all dialects of \(\rm\LaTeX\) and \(\sf MathML\)

  eISSN 2349-2716; pISSN 2349-6088