Energy Levels and Transition Parameters in Ce\(^{6+}\) from MCDHF Model

Abdul Wajid, S. Jabeen


Multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations and subsequent Relativistic Configuration Interaction (RCI) calculations have been performed for the 5s\({}^{2}\)5p\({}^{4}\), 5s\({}^{2}\)5p\({}^{3}\)6s and 5s5p\({}^{5}\) configurations of six times ionized cerium using GRASP2018 package. The electron correlation effects, (BI) interaction and Quantum Electrodynamics (QED) effects have been considered in the calculation.\ Energy levels, oscillator strength and transition probabilities among the transitions of 5s\({}^{2}\)5p\({}^{4}\), 5s5p\({}^{5}\) and 5s\({}^{2}\)5p\({}^{3}\)6s have been calculated. The calculated energy levels are compared with experimental data available and show good agreement with it. 


Dirac-Hartree-Fock; Energy levels; Transition probabilities; Lifetimes

Full Text:



J. D. Gillaspy, Highly charged ions, J. Phys. B: At. Mol. Opt. Phys. 34, R93 – R130 (2001), DOI: 10.1088/0953-4075/34/19/201.

J. Bieron, C. F. Fischer, S. Fritzche, G. gaiglas, I. P. Grant, P. Indelicato, P. Jönsson and P. Pyykkö, Ab initio MCDHF calculations of electron-nucleus interactions, Phys. Scr. 90, 054011 (2015), DOI: 10.1088/0031-8949/90/5/054011.

W. H. Wells Jr. and V. L. Wells, The Lanthanides, Rare Earth Metals, in Patty’s Toxicology, E. Bingham and B. Cohrssen (eds.), Wiley, Hoboken (2012), DOI: 10.1002/0471435139.tox043.pub2.

D. Kasen, B. Metzger, J. Barnes, E. Quataert and E. Ramirez-Ruiz, Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event, Nature, 551, 80 (2017), DOI: 10.1038/nature24453.

A. Kramida, Y. Ralchenko, J. Reader and NIST ASD team (2018), NIST Atomic Spectra Database (ver. 5.6.1), [online]

A. Tauheed and Y. N. Joshi, The 5s25p4- (5s5p5 + 5p36s) transitions in Ce VII and 5s25p34S - 5s5p44P transitions in Ce VIII, Can. J. Phys. 86, 714 (2008), DOI: 10.1139/p08-035.

E. Träbert, P. Beiersdorfer, S. B. Utter, G. V. Brown H. Chen, C. L. Harris, P. A. Neil, D. W. Savin and A. J. Smith, Experimental M1 transition rates of coronal lines from Ar X, Ar XIV, and Ar XV, Astrophys. J. 541, 506 (2000), DOI: 10.1086/309427.

A. E. Kramida, The program LOPT for least-squares optimization of energy levels, Comput. Phys. Commun. 182, 419 (2011), DOI: 10.1016/j.cpc.2010.09.019.

C. Froese Fischer, G. Gaigalas, P. Jönsson and J. Bieron, GRASP2018 — A Fortran 95 version of the General Relativistic Atomic Structure Package, Comp. Phys. Commun. 237, 184 (2019), DOI: 10.1016/j.cpc.2018.10.032.

I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules, New York, Springer (2007), DOI: 10.1007/978-0-387-35069-1.

I. P. Gant, Relativistic atomic structure calculations, in Methods in Computational Chemistry, Vol. 2 (Relativistic Effects in Atoms and Molecule), S. Wilson (ed.), Plenum, New York, DOI: 10.1007/978-1-4613-0711-2_1.

C. F. Fischer, Evaluating the accuracy of theoretical transition data, Phys. Scr. T134, 014019 (2009), DOI: 10.1088/0031-8949/2009/T134/014019.

J. Ekman, M. R. Goderfoid and H. Hartman, Validation and Implementation of uncertainty estimates of calculated transition rates, Atoms 2, 215 (2014), DOI: 10.3390/atoms2020215.

P. Jönsson, G. Gaigalas, J. Bieron, C. F. Fischer, I. P. Grant, New version: Grasp2K relativistic atomic structure package, Comput. Phys. Commun. 184, 2197 (2013), DOI: 10.1016/j.cpc.2013.02.016.



  • There are currently no refbacks.

RGN Journal Management System is fully compatible with all dialects of \(\rm\LaTeX\) and \(\sf MathML\)

  eISSN 2349-2716; pISSN 2349-6088