Simultaneous Effects of Hydrostatic Pressure and External Electric Field on the Energy Spectra of Two Donors in a Strained Zinc Blende GaN/AlGaN Quantum Dot

D. Prasanna, P. Elangovan


The energy spectrum of two donors in a strained GaN quantum dot embedded in Al\(_x\)Ga\(_{1-x}\)N has been investigated under the influence of hydrostatic pressure and external electric field. Our calculations are carried out using variational principle within the single band effective mass approximation by means of dot radius, hydrostatic pressure, and electric field. The numerical results show that the binding energy of two donors increase, attains a maximum value, and then decreases as the quantum dot radius increases for any electric field. Moreover, the binding energy of two donors increases with the pressure for any size of dot. Our results are compared with existing literature.


Strained quantum dot; Variational method; Hydrostatic pressure; Electric field

Full Text:



K.-F. Berggren, Int. J. Quant. Chem. 33 (1988) 217, DOI: 10.1002/qua.560330306.

G. Bastard, E. E. Mende, L. L. Chang and L. Esaki,

G. Bastard, Phys. Rev. B 24, 4714 (1981), DOI: 10.1103/PhysRevB.24.4714.

U. Hohenester and E. Molinari, Phys. Status Solidi (A) 178 (2000) 277, DOI: 10.1002/1521-396X(200003)178:1%3C277::AID-PSSA277%3E3.0.CO;2-A.

E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao and S. S. Lau, Appl. Phys. Lett. 71, 2794 (1997), DOI: 10.1063/1.120138.

N. Wuritu and G. Jian, Journal of Optoelectronics Laser 21, 1102 (2010) (in Chinese).

C. I. Mendoza, G. J. Vazquez, M. Del Castillo-Mussot and H. Spector, Phys. Rev. B 71, 075330 (2005), DOI: 10.1103/PhysRevB.71.075330.

C. Dane, H. Akbas, S. Minez and A. Guleroglu, Physica E: Low-dimensional systems and Nanostructures 41, 278 (2008), DOI: 10.1016/j.physe.2008.07.016.

S. S. Li and J. B. Xia, J. Appl. Phys. 101, 093716 (2007), DOI: 10.1063/1.2734097.

N. Raigoza, A. L. Morales, A. Montes, N. Stress effects on shallow-donor impurity states in symmetrical GaAs/AlxGa1¡xAs double quantum wells, Phys. Rev. B 69, 045323 (2004), DOI: 10.1103/PhysRevB.69.045323.

S. T. Perez-Merchancano, H. Paredes-Gutierrez and J. Silva Valencia, J. Phys: Condens. Matter 19, 026225 (2007), DOI: 10.1088/0953-8984/19/2/026225.

Y.-F. Huangfu and Z. W. Yan, Journal of Inner Mongolia University 39, 18 (2008).

W. Hui-Ting, W. Hai-Long and J. Li-Ming, Acta Physica Sinica 58, 465 (2009) (in Chinese), DOI: 10.7498/aps.58.465.

E. Sadeghi, Physica E: Low-dimensional Systems and Nanostructures 41, 1319 (2009), DOI: 10.1016/j.physe.2009.03.004.

S. Adachi, J. Appl. Phys. 58, R1 (1985), DOI: 10.1063/1.336070.

Z. W. Yan, S. L. Ban and X. X. Liang, The Eur. Phys. J. B : Condensed Matter and Complex Systems 35, 41 (2003), DOI: 10.1140/epjb/e2003-00254-8.

L. Shi and Z. W. Yan, Phys. Stat. Sol. C 8, 42 (2011), DOI: 10.1002/pssc.201000625.

D. Z.-Y. Ting and Y.-C. Chang, Phys. Rev. B 36, 4359 (1987), DOI: 10.1103/PhysRevB.36.4359.

J.-M. Wagner and F. Bechstedt, Phys. Rev. B 66, 115202 (2002), DOI: 10.1103/PhysRevB.66.115202.

H. Wang, G. A. Farias and V. N. Freire, Phys. Rev. B 60, 5705 (1999), DOI: 10.1103/Phys-RevB.60.5705.

I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001), DOI: 10.1063/1.1368156.

A. R. Goñi, H. Siegle, K. Syassen, C. Thomsen and J.-M.Wagner, Phys. Rev. B 64, 035205 (2001), DOI: 10.1103/PhysRevB.64.035205.

N. E. Christensen and I. Gorczyca, Phys. Rev. B 50, 4397 (1994), DOI: 10.1103/PhysRevB.50.4397.



  • There are currently no refbacks.

RGN Journal Management System is fully compatible with all dialects of \(\rm\LaTeX\) and \(\sf MathML\)