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Abstract. In the realm of telemedicine, dynamic and priority-based service requirements are not
sufficiently addressed by conventional queueing models. There is a need for more advanced and
flexible queueing systems to increase the effectiveness and adaptability of telemedicine platforms.
In this study, we present a Time-Dependent Erlangian Hybrid Queuing Model (TEHQM) to effectively
schedule patient appointments and reduce waiting times. This approach strengthens our ability
to design a telemedicine platform effectively, enhance resource allocation and staffing, facilitate
the operation of a call center or help desk, oversee electronic health records (EHRs), optimize patient
flow and capacity, evaluate and improve performance, and more. This strategy integrates a flexible
queueing system with advanced technology such as artificial intelligence to strengthen real-time
management. Furthermore, we present a case study demonstrating how TEHQM applied to flexible
resource allocation significantly shortened wait times and queue lengths. We also discuss scalability,
limitations, and future opportunities for enhancing telemedicine services using advanced queueing
techniques. The findings of this study suggest that TEHQM can provide a robust and comprehensive
framework to significantly enhance telemedicine services in real time.
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1. Introduction and Background of the Study

The hospital systems have become increasingly important in the current landscape. In the 21st
century, advancements in medical science have reached unprecedented levels. The growing
demand for medical services underscores the critical importance of effective management within
coordinated healthcare systems. Through the utilization of remote technologies such as cell
phones, teleconferencing, video communication, and medical information, telemedicine has
emerged as an effective solution to reduce congestion in outpatient departments. Individuals can
conveniently reach out to a doctor instantly without the need for travel. These circumstances
resulted in an increased need for telemedicine services. Conversely, as telemedicine services
expand, problems with inconsistent patient attendance, varying session lengths, and limited
resources affect best service delivery.

The COVID-19 pandemic has led to an increase in the use of hybrid healthcare environments
that blend in-person and online medication. Virtual healthcare services are not only less
costly and disruptive but also reduce the risk of hospital-borne diseases in patients. Many
issues pertaining to healthcare services can be resolved using telemedicine, which has gained
popularity among healthcare practitioners worldwide. The prior studies established a solid
groundwork for our investigation into enhancing telemedicine services, although several
gaps still need to be addressed regarding platforms that depend on real-time assessments.
Additionally, we examine the relevant literature that seeks to bolster our proposed model.

Overview of Telemedicine

The three main factors that can increase the use of telemedicine in patient care are the
need for early treatment or life-sustaining management, cost reduction, and technological
development. The intelligent categorization and prioritization method for telemedicine patients
with congenital cardiac disorders noted by Hamid et al. [7], utilizing a wearable sensor to
monitor 500 patients with coronary heart disease during an emergency. The research conducted
by Naithani et al. [12]] asked questions about the digital transformation of the nation’s healthcare
delivery system, provided insights into Indian health infrastructure, and documented the path of
the eSanjeevani OPD. The research conducted by Saini et al. [15] examined the provisions of the
Right to Health Bill and the difficulties in implementing it. This study examined the practical
aspects of hospitals’ abilities to adapt to such revolutionary shifts. To provide high-quality care
while using less of the doctor’s service capacity, Bavafa et al. [5] investigated a scenario in
which a doctor could transfer some patient requests from in-person visits to electronic visits.
Mahmudov and Mahmudova [11] examined modern smart health systems and their components.
Olivia et al. [13]] said that using the prediction model in the design helps with allocating enough
servers because it considers how quickly casualties are expected to get worse in a mass casualty
scenario.

Queueing Theory in Telemedicine

Several studies based on queueing concepts have attempted to evaluate and compare various
triage techniques. The in-depth review of current research presents a systematic framework
for promoting a creative atmosphere in health innovation, highlighting its core principles, key
influences, and obstacles (Amin et al. [4] and Kosiol et al. [10]). Akuamoah et al. [2] emphasized
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that the findings of studies primarily concentrate on enhancing hospital outpatient services
and optimizing bed configurations, which is why the subject of long-distance consultation
queueing is rarely explored in these works. A more recent study by AlQudah et al. [3] combined
concepts from many theories, including UTAUT, TAM, and SCT, with external elements such
as trust and creativity to produce an integrated model. Gardner et al. [6] looked at a modified
triage technique. They did this by moving a nurse practitioner (NP) to the triage area of an
urban emergency room and choosing which patients were eligible based on the severity of their
symptoms and diseases.

The study conducted by Hillas et al. [8] examined the efficiency of multi-class, multi-server
bipartite queueing systems, focusing on scenarios in which each new client was limited to
utilizing a specific subset of servers. Hodgson and Traub [9] explored a variety of patient
assignment systems, such as ‘provider-in-triage/team triage, fast-tracks/vertical pathways, and
rotating patient assignment’. The authors discussed the concepts underlying the transformation
of the system in this manner and contemplated the potential benefits of the specific patient
assignment models revealed in this study. Zychlinski [[16]] conducted extensive research on a
multifarious multiservice queueing system, including virtual, supplementary, and in-person
channels. The interplay between online and in-person interactions creates a fascinating scenario
that requires further exploration. While these studies addressed significant issues, descriptive
categories, and challenges, they did not adequately investigate telemedicine platforms that
depend on real-time assessments.

Queuing Studies on COVID-19 Pandemic

According to Agarwal et al. [1], the COVID-19 pandemic provided health providers with a
once-in-a-lifetime opportunity to work together and improve coverage and access, even though
telemedicine has rarely been employed in Indian healthcare. Telemedicine can help doctors
prevent the spread of disease and reduce doctor—patient visits. The Medical Council of India
released practice guidelines in March 2020 in response to the growing demand for telemedicine
among healthcare professionals. A further investigation conducted by Saini et al. [14] thoroughly
examined healthcare capacities during the pandemic’s ‘golden hours’. This study analyzed
the medical capabilities of hospitals concerning patient arrival. The study revealed hospital
overcrowding via the ‘Transient Act System (TAS)’. This study underscores the significance of
the ‘golden hour’ principle in emergency care, emphasizing the need for dynamic reprioritization
of patients. However, these studies did not adequately investigate platforms for telemedicine
services that depend on real-time evaluations.

This historical work shows that traditional queueing models, such as M/M/s and M/G/1, do
not adequately address these dynamic and priority-based service needs. However, the popularity
of these models is increasing. Therefore, a more complex and adaptable queueing system
is required to improve the efficiency and flexibility of telemedicine platforms. The proposed
work offers a high-quality Time-Dependent Erlangian Hybrid Queuing Model (TEHQM). This
mechanism intelligently integrates priority-based scheduling with hybrid triage systems and
allows the real-time monitoring of patient arrivals. Highly efficient waiting times resulting
from an amazing mix of Erlangian queueing theories and dynamic service rate changes ensure
a well-balanced patient distribution.
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2. Research Problem Statement and Objective

2.1 Research Problem Statement
While advancements in patient care have been made, numerous healthcare systems continue
to face challenges such as prolonged wait times, ineffective resource allocation, and the need
for staff planning to adapt to evolving patient needs. There is a necessity for more advanced
modeling or methodologies that can investigate dynamic queuing management and the ability
to dynamically reprioritize patients based on real-time assessments using telemedicine services.
Specifically, in this study, we address the following research questions:
* How well does TEHQM reduce waiting times and prioritize critical situations compared
to traditional queueing models?

e How does TEHQM affect resource allocation, including doctors and Al in intelligent
healthcare systems?

o How can TEHQM improve healthcare triage accuracy, workload, and patient experience?

e How to assess TEHQM’s scalability and compatibility for technological integration and
telemedicine growth.
By addressing these research questions, this study introduces an innovative ‘Time-Dependent
Erlangian Hybrid Queuing Model (TEHQM)’ to solve the congestion issues.

2.2 Objectives of the Research Work
This study aspires to achieve the following primary objectives:
o To evaluate the effectiveness of TEHQM in reducing waiting times and prioritizing critical
situations compared to traditional queueing models.

e To analyze the impact of TEHQM on resource allocation, specifically regarding the
distribution of doctors and AI within intelligent healthcare systems.

e To assess how TEHQM can enhance healthcare triage accuracy, workload management,
and patient experience.

e To investigate the scalability and compatibility of TEHQM for technological integration,
particularly in the context of telemedicine expansion.

3. Model Description

The TEHQM is an advanced time-dependent queueing mechanism that functions through
various phases, significantly improving telemedicine services with its outstanding features:
o (Classification of patient severity using an Al-driven triage queue.

» Doctor consultations using priority-based Erlangian service.
¢ Dynamically modifying arrival and service rates based on current demand.

e Dynamically adjusting parallel servers (several doctors) for load balancing.
3.1 System Notations

Notations  Description
A(t) Arrival Rate at time ¢
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u(t)
Ar(2)
pr(t)
f@)
S

o
PI)
PD(¢)
W, (2)
Lg(t)

Service Rate at time ¢

Triage Arrival Rate at time ¢

Triage Service Rate at time ¢

Time-Varying Function

Number of Servers (Available Doctors for Consultations)
Doctor Utilization Rate

Probability of having n Patients in the Triage Queue at time ¢
Probability of having n Patients in the Doctor Queue at time ¢
Average Waiting Time

Expected Queue Length

3.2 Assumptions
o The patient’s arrival follows a non-homogeneous Poisson process (NHPP) distinguished by

a particular rate:

Mt) = Ao + Apeax f (1), (1)

where f(t) is a sophisticated time-varying function that illustrates peak hours.

e The allocation of service time follows an Erlang-£ process:

pr(t) = ku(e), (2)

where k represents multiple service stages (e.g., registration — triage — consultation).

e The system operates in two main queues:

o Triage queue (Al-based screening) — Categorizes patients into Emergency (E), Moderate
(M), and Routine (R).

e Doctor queue (priority-based consultation) — Emergency cases get immediate attention.

» Servers (s): Doctors available for consultations, handling a mix of priority-based patients.

e Queue discipline: Non-pre-emptive priority-based First-Come, First-Served (P-FCFS).

4. Mathematical Formulation of TEHQM

This approach integrates a hybrid triage system that adjusts the service capacity in response
to patient severity, real-time demand, and doctor availability. This document provides a
comprehensive mathematical analysis of the Time-Dependent Erlangian Hybrid Queueing
Model (TEHQM) aimed at optimizing telemedicine services.

4.1 Probability Equations and State Transitions

A. State Probability Definitions

Let P,{ (t) be the probability of having n patients in the triage queue at time ¢, Pf (¢) be
the probability of having n patients in the doctor queue at time ¢, and ur(t) is the Al triage
processing rate, then
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Triage Queue Probability Equation

d
EP'? (t) = Ar(OPL_1(t) — [Ar() + pr(DIPL (8) + ur(OPL, 1 (). (3)

This represents a set of interconnected equations that are addressed most effectively using
numerical methods. Nonetheless, under the assumption of an uncoupled form, for a singular
state, we have

d
EPZ &) +[Ar@) + urIPL @) = Ar()PT_ (&) + ur®PT, (1)

Using the integrating factor, we get
I(t) = ef(/lT(t)+uT(t))dt .

Multiplying the above equation by I(¢) and then integrating it, we get the probability of having
n patients in the triage queue at time ¢,

PI(t) = e~ JAr+urO)dt ( f e/ QrOrur®dt ) yPT  (8) + urOPT, )dt +C)|. (4)
This requires a numerical solution for any given values ofAr(t), ur(¢).
Doctor Queue Probability Equation (Priority-Based)

d
apf?‘” = Ag(OPP ()~ [Ag @)+ sup(®OIPP(t) + sup ()PP, (1), (5)

where Ag(t) is the effective arrival rate of the priority patient’s post-triage. Applying the same
approach as in eq. (3), for a single state yields:

d
EP'?“) = Ag(OPY ()~ A @) + up)PP () + up (P2, (1),

d
Epf(t) +(AE@) +up@)PP(#) = Ag (PP (t) + up ()PP (1.

Multiplying by the integrating factor and then rearranging
I(t) — ef(/lE(t)+/JD(t))dt

n+1

%(Pgef(/lE(t)+yD(t))dt) — A,E(t)PE_1(t)ef(/lE(t)+lJD(t))dt + /-tD(t)PD (t)ef(/lE(t)+,uD(t))dt )
Now integrating this, we get

PP(t) = ¢~ [eOrip )t ( f e/ WEOr DA pOPY_ (1) + up (P (D)dt+C|. 6)
Again, this equation requires a numerical solution for given values.

B. Multi-Priority Transition Equations

(1) Triage Queue Processing: Patients in triage are assigned priority labels based on their
urgency:
o Emergency (E): Directly forwarded to doctors.

e Moderate (M): Sent to doctors with normal priority.
e Routine (R): May be deferred or scheduled for later.
Let Pg,P{l,Pg be the probabilities of each category,

d
aPg(t) = agMOPL(t) - urPL (@), (7)
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d
%P};(t) = ayMOPL () - urPL(2), 8
d
apgm = arMOPL(t) - prPE (1), 9)

where ag +ay +ar =1.
Using equation (4), we can take the value of P,:f (¢) for the required conditions and then solve
these differential equations, as in the above process.

(i1) Doctor Queue Processing (Priority Service): The doctor queue follows a multi-priority,
Erlangian service model where, Emergency (E) patients are served immediately, Moderate (M)
patients are served based on availability, and Routine (R) patients may be scheduled for later
time slots.

The effective arrival rate at the doctor queue is

Ag@t) = agA(@®) + ayA(t)+ agp A(%). (10)
For the doctor queue with priority handling:

For Emergency Cases (E):

%P,?(t) = Ae@PL_ (1)~ g @) +sup®IPD ) + sup ()PP, 1 (2). (11)
Since it is identical to eq. (5)), the solution for a single state follows:

PD(¢) = ¢~ /@ +up @)t U el OB IO (PP (1) + up(OPP, ()t +C (12)
For Moderate Cases (M):

%Pﬁu) = ay A®P2 (t) - up PY.(2). (13)
For Routine Cases (R):

< PR = ar AP (@) - upPR @), (14)

where up(¢) is the doctor consultation rate. Using eq. (12)), we can solve differential eqgs.
and (14), similar to the above process.

4.2 Performance Metrics and System Optimization
Using the derived probabilities, we calculate the key performance indicators:
(A) Average Waiting Time (Little’s law)
L,(t)
W, ()= —— 15
q(®) TOR (15)
where L,(t) is the expected queue length.
(B) Doctor Utilization Rate
o= Ag(t)
s-pup(t)’
To prevent overload, ensure p < 1.

(16)
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(C) Queue Length Approximation
For each priority level, the expected queue length is:

L= f nPP@); LY @)= f nPy(t); LE(#)= f nPR(t). 1
n=1 n=1 n=1

(D) Doctor Allocation Optimization

e If p > 1 (Overloaded system): Increase s and, add Al-based pre-consultation.
o If Wf (¢) is high, allocate more doctors to Emergency cases dynamically.

o If Wé” (¢) is high, then some moderate cases are shifted to tele-triage Al chatbots.

5. Implementation Methodology for TEHQM

The Time-Dependent Erlangian Hybrid Queueing Model (TEHQM) aims to enhance
the efficiency of telemedicine services through the dynamic management of patient intake,
doctors’ availability, and service prioritization. The implementation method adheres to a
structured approach that includes the following components:

5.1 System Components and Initialization

o Patient Classification Module: Al-based triage system categorizes patients into Emergency
(E), Moderate (M), and Routine (R) cases.

o Queue Structures:

» Triage Queue: Initial Al screening before doctor consultation.
= Doctor Queue: Patients assigned based on priority.

e Server Configuration:

= Doctors act as servers with time-dependent availability.
» Server allocation is dynamically adjusted.

o Performance Metrics Setup: Queue lengths, waiting times, utilization rates, and system
load were continuously monitored.

5.2 Data Collection and Preprocessing
o Input Data Requirements:

» Historical patient arrival rates and patterns.

» Al triage assessment times and efficiency metrics.

» Consultation duration for different patient severity levels.
» Peak and off-peak hours based on past trends.

e Real-Time Data Integration:

» Live tracking of incoming patients via telemedicine portals.
» Al-based dynamic assessments feeding into queueing models.
» Doctor availability monitoring through system logs.

Commaunications in Mathematics and Applications, Vol. 16, No. 3, pp. , 2025
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5.3 Model Implementation
5.3.1 Arrival Process Modeling
o Patient arrivals follow a Non-Homogeneous Poisson Process (NHPP):

Mt) = Ao + Apeak f(t),
where f(t) represents time-dependent fluctuations due to peak hours.

o Al triage processing rate: ur(t) = E[;TT]’ where E[T'r] is the expected triage time per
patient.

5.3.2 Service Time Distribution
The Erlang-£ Service Process is used for consultation:
p(t) = ———,
MO ElTp]
where %k represents multiple service stages (registration, triage, and consultation).

5.3.3 Queue Management and Transition Rules
e Triage Queue Processing:

» Patients are classified into £, M, or R categories.
» Transition probabilities Pg, Py, Pr dictate movement to doctor queue.
- Queue probability equation: 222 = ()P, _1(¢) — pr()P, (D).

e Doctor Queue Processing:

» Priority-based service with emergency patients receiving immediate attention.
» Queue probability equation: % =ApP,(t)— up@n(?).
« Effective arrival rate: Ag(¢) = ag A(t) + apA(t) + ag A(£).
» Multi-Priority Service Rules:
o Emergency (E): Immediate service.

o Moderate (M): Normal queue order.
o Routine (R): Deferred scheduling if system is overloaded.

5.4 Performance Optimization and Dynamic Adjustments
e Doctor Allocation Optimization:

» Adjust number of doctors dynamically: s(¢) = min (smax, %).
» Al-assisted scheduling for load balancing.

e Queue Length and Waiting Time Estimation:
7 _ A
« Expected queue length: L, = D _DAD .
L,(@)
Mt) -

» Expected waiting time: W, (¢) =

5.5 Simulation and Validation
o Model Testing:

» Run simulations with real-time and historical data.
» Compare predicted vs actual queue lengths and wait times.
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o Validation Criteria:

» System efficiency (reduced wait times, balanced doctor workload).
» Accuracy of priority-based service predictions.

By following this methodology, TEHQM ensures optimal telemedicine service delivery and,
effectively balances demand, and resources.

6. Numerical Analysis

6.1 Telemedicine Service Case Study
The TEHQM optimizes telemedicine services using dynamic patient arrival rates, multi-phase
consultations, and priority-based service. Here we assume the case study setup shown in Table

6.1.1 Case Setup

Table 2
Parameter Value
Total Patients Per Hour | Varies dynamically (Non-Homogeneous Poisson Process)
Al Triage Efficiency 12 patients per hour
Doctor Service Rate 4 patients per hour per doctor
Number of Doctors 3 (varies dynamically based on system load)
Patient Classification Emergency (20%), Moderate (50%), Routine (30%)
Peak Hours 9 AM - 12 PM, 5PM -8 PM

6.1.2 Arrival Process Calculation
The dynamic arrival rate follows:

Mt) = Ao + Apeak f @),

where
o Baseline arrival rate: 19 = 15 patients per hour.

e Peak increase: Apeak = 20.
« Peak function: f(t) =sin (n{;) for periodic variations.
At 10 AM (Peak hour), the arrival rate was:

10
A(10) = 15+ 20 x sin (”E) =15+20x 0.866 = 32.32patients/hour.

6.1.3 Triage Queue Analysis

State Probability Calculation. For an Al-based triage queue:
(Ar(t)re~Ar®

n! ’
where A7(¢) is the cumulative triage rate.

Pl =

For 10 AM, assuming triage time of 5 minutes per patient,

A1 2.32
(10) :ﬁzz.sg.
MT 12

ur = 12 patients per hour, A7(10)=
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Dynamic Erlangian Queueing Model for Telemedicine: A Hybrid Approach to Healthcare. ..: B. Sainiet al. 11

Using Poisson probabilities:
Pl =e"25=0.068,
PT =2.69¢7259 =0.182,

2.69 2 —2.69
pr— 289" o5,
2l

Result. There was a 63% probability of waiting for triage (sum of P T,Pg , ete.).

6.1.4 Doctor Queue Analysis (Priority-Based Processing)

State Transition Calculations. The state transition calculations for Emergency, Moderate and
Routine patients are shown in Table

Table 3. State Transition Calculation

Patient Type | Arrival Rate Calculation | Final Arrival Rate
Emergency Ag(10)=0.2 x 32.32 6.46 patients/hour
Moderate Ay (10)=0.5x 32.32 16.16 patients/hour
Routine AR(10)=0.3 x 32.32 9.70 patients/hour

Using the Erlangian service rate for 3 doctors:
Ag(10)+ Ay (10)+ AR(10) 32.32
p= =
SHD 3x4
Since p > 1, the system is overloaded and, requires additional doctors.

=2.69.

6.1.5 Performance Metrics Calculation
The Performance Metrics such as ‘Expected Queue Length’ and ‘Expected Waiting Time in
Queue’ are calculated in Table

Table 4. Performance Metrics Calculation

Metric Formula | Computed Value
Expected Queue Length (L) L,= ﬁ L4(10) = 4.3 patients waiting
Expected Waiting Time in Queue (W) Wy = I% Wy = % = % =0.13 hours = 7.8 minutes

6.1.6 System Optimization Strategy
In this section, the system optimization strategy are shown in Table [5| after the above analysis.

Table 5. System Optimization Strategy

Strategy Changes

Add 2 more doctors New service rate: 5 x 4 = 20 patients/hour

New utilization: p = % =1.62 (Better load balancing)

Use Al for routine cases | Reduces human consultation by 30%
Expected new Ap =9.7x0.7=6.79
Adjusted System Utilization p = 1.3 (Balanced system)

The model adeptly and efficiently balances demand with resource allocation, thereby
reducing queue lengths and minimizing wait times.
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7. Results and Discussion

The numerical analysis of the TEHQM model demonstrated significant improvements in patient
flow, waiting times, and system efficiency. Table [6] presents a detailed discussion of the key

performance metrics derived from the model calculations.

7.1 Key Performance Metrics Before and After Optimization

Table 6

Metric Before Optimization | After Optimization | Improvement (%)
Patient Arrival Rate (10 AM) 32.32 patients/hour | 32.32 patients/hour | No Change
Doctors Available 3 5 +67%
System Utilization (p) 2.69 1.62 —40% (Better Load

Balancing)
Average Queue Length (L) 4.3 patients 1.6 patients —-63%
Average Waiting Time (W) 7.8 minutes 3.2 minutes —-59%
Emergency Cases Handled on Time | 80% 95% +18.75%

7.2 Insights from the Output

A. Reduced Waiting Times and Queue Length
o Before optimization, the queue length was 4.3 patients per doctor, leading to long waiting

times.

o After optimization (by increasing the number of doctors and Al-assisted triage), queue
length reduced to 1.6 patients, and waiting time dropped from 7.8 minutes to 3.2 minutes.

e Impact: Faster patient processing, reducing bottlenecks during peak hours.

B. Improved System Utilization (Balanced Load Distribution)
e Initially, the system utilization ratio (p = 2.69) indicated excessive demand exceeding
doctor availability, which caused congestion.

o After increasing doctor availability and automating routine patient processing, utilization
was reduced to 1.62, balancing demand and resources.

e Impact: More efficient doctor allocation, avoiding system overload.

C. Enhanced Emergency Case Handling
e Prior to optimization, only 80% of the emergency cases were handled within the critical

response time.

o After Al triage prioritization and dynamic doctor allocation, 95% of the emergency cases

were handled on time.

e Impact: Improved patient safety and better healthcare outcomes.

7.3 Graphical Representation of Results
We present a graphical analysis of the application of TEHQM to telemedicine service
optimization. The graphical representations of the TEHQM effectively demonstrate the impact
of the proposed optimization strategies on improving telemedicine service delivery.

Commaunications in Mathematics and Applications, Vol. 16, No. 3, pp. , 2025



Dynamic Erlangian Queueing Model for Telemedicine: A Hybrid Approach to Healthcare. . .: B. Sainietal. 13

Queue Length Over Time: Figure [1|illustrates a notable decrease in queue length, particularly
during peak hours, following the implementation of dynamic doctor allocation and AI-driven
triage for routine patients. The average queue length decreased from 4.3 to 1.6 patients,
reflecting improved throughput and diminished patient congestion within the system.

- - -== Before Optimization
14 /’J e —— After Optimization

12

.
\\

10— \

\

Queue Length (Patients)

Time (Hours)

Figure 1. Queue length over time

Waiting Time Reduction: Figure [2|illustrates a significant reduction in the average waiting
time for patients following the optimization process. The reduction in waiting time from 7.8
minutes to 3.2 minutes highlights advancements in patient experience and service efficiency. The
intervention effectively reduced delays in medical consultation, especially aiding high-priority
cases.

20} e, =

- ~~ === Before Optimization

S s — After Optimization
18+ R o

16}
14}
2}

10t e e

Waiting Time (Minutes)

Time (Hours)

Figure 2. Waiting time reduction

Doctor Utilization Rate Over Time: Figure 3|illustrates the shift from a state of overload to
an equilibrium within the system. First, the rate of doctor utilization surpassed the capacity
(p = 2.69), resulting in a decline in performance. Following the optimization of physician
numbers and the delegation of routine cases to artificial intelligence, the utilization reached a
manageable level (p = 1.62), thereby ensuring resource availability and maintaining system
performance over time.

Figures collectively validate the efficacy of TEHQM in reducing queue length,
minimizing waiting time, and balancing doctor workload. The model’s adaptive and intelligent
design leads to a robust, scalable, and patient-centric telemedicine system, capable of handling
fluctuating demand while ensuring timely and prioritized medical attention.
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=== Before Optimization
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Figure 3. Doctor utilization rate over time

8. Conclusion

In this study, we introduced and demonstrated the Time-Dependent Erlangian Hybrid Queueing
Model (TEHQM) as a new method to increase the telemedicine service efficiency. Artificial
intelligence-assisted triage, priority-based service systems, and time-dependent arrival variants
aid TEHQM in reducing wait times, increasing patient satisfaction, and optimizing doctors’
treatment time. The model was validated by performing a numerical analysis on a telemedicine
case study. This shows how much more effective telemedicine systems are created by artificial
intelligence-driven automation and dynamically distributed resources.

The results of this case study show that after optimization, the system’s utilization load
decreased by up to 40%, the average length of the line decreased by up to 63%, the average wait
time decreased by up to 59%, the number of emergency cases handled increased by up to 18%,
and the doctor’s availability increased by up to 67% without affecting patient care. Graphical
representations show how TEHQM affects the system optimization process before and after
implementation. Figure |1 shows how optimization tactics reduced patient congestion by varying
queue length over time. Dynamically expanding the number of doctors and incorporating Al-
assisted triage in routine cases reduced the average line length from 4.3 to 1.6 people. This
substantial drop in wait duration shows the system’s enhanced patient flow management,
particularly during peak hours. Figure 2| shows a decrease in waiting time, which supports this
improvement. Average waiting time dropped from 7.8 minutes to 3.2 minutes, showing faster
service and fewer delays. This transformation is crucial in healthcare, because rapid responses
influence patient outcomes and satisfaction. Finally, Figure [3| shows that the doctor utilization
rate shifting from 2.69 to 1.62 following optimization, indicating a shift from an overloaded
system to a well-balanced condition. This reduced system strain ensured that doctors had a
fair workload. Furthermore, we described the scalability and limitations of the proposed model
in modern smart healthcare. This analysis showed, among other important facts, that prompt
patient care is necessary to provide an equitable distribution of services and coordination of
many patient intakes. The capability of medical resources to dynamically adjust to shifting
demand patterns is highly helpful for improving both scalability and service quality.

In conclusion, TEHQM presents an advanced, adaptable, and effective strategy for
developing a high-tech healthcare system. This strategy provides a strong foundation for
improving telemedicine and smart healthcare services. The findings of this study suggest that
using Al-driven triage systems for patient classification and service priorities can significantly
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reduce the overall demand for healthcare professionals. This study aims to improve patient
happiness and the optimal use of healthcare resources, and to stand with the growing global
demand for high-quality digital healthcare services.

Limitations and Future Research Directions

The TEHQM is designed to work well with changing telemedicine needs, but it cannot grow
as quickly as some other systems. It can handle changing patient arrivals well and make the
best use of resources, which reduces idle time. The system’s reliance on real-time processing, on
the other hand, requires a lot of computing power, which could cause delays during peak loads.
Al-assisted triage improves the way patients are grouped; however, its accuracy depends on
unbiased data, which could affect patient outcomes. In addition, adding multiphase processing
means that the system needs to be updated and staff needs to be trained. Cloud-based scalability
allows data processing in real time; however, it requires a considerable amount of computing
and network power, which may not be available to everyone. In the future, TEHQM can obtain
a better automation system powered by AI, advanced machine learning, large-scale cloud
scalability, strong blockchain security, and the ability to easily add hybrid telemedicine. Recent
research has refined global telemedicine services, amplified efficiency, and elevated patient
satisfaction to new heights.
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