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Abstract. In this paper, the singularly perturbed boundary-value problem for a nonlinear second
order delay differential equation is considered. For the numerical solution of this problem, we use
an exponentially fitted difference scheme on a uniform mesh which is succeeded by the method of
integral identities with the use of exponential basis functions and interpolating quadrature rules with
weight and remainder term in integral form. Also, the method is proved to be first-order convergent
in the discrete maximum norm uniformly in the perturbation parameter. Furthermore, numerical
illustration provide support of the theoretical results.
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1. Introduction
A singularly perturbed differential-difference equation (DDE) is an ordinary differential equation
in which the highest derivative is multiplied by a small parameter and including at least one
delay term. Singularly perturbed delay differential initial or boundary value problems (SPDPs)
are a very important role in science and engineering field. For instance, they occur in the study
of human pupil light reflex [15], first-exit problems in neurobiology [22], models of physiological
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processes and diseases [16], optimal control theory [11], optically bistable devices [5] and signal
transmission [6], and other models [7].

On the other hand, it is quite difficult to find exact solutions to SPDPs. So, numerical
methods play an important role in this work area. In [12, 13], the authors have considered some
asymptotic analysis of boundary value problems (BVPs) for second order singularly perturbed
DDEs and some numerical techniques for solving of this type of problems with large and small
shifts were considered in [9, 14, 18, 19, 24]. Recently, there has been a growing interest in
the numerical solution of SPDPs. For example, reproducing kernel method [9], initial value
technique [23], some special finite element methods [17, 21, 25] have been used for solving
SPDPs.

Motivated by the previous works, we consider following nonlinear second order singularly
perturbed delay differential problem

Lu := εu′′(x)+a(x)u′(x)+ f (x,u(x), u(x− r))= 0, x ∈Ω, (1.1)

subject to the interval and boundary conditions,

u(x)=ϕ(x), x ∈Ω0; u(l)= A, (1.2)

where Ω=Ω1∪Ω2, Ω1 = (0, r], Ω2 = (r, l), Ω̄= [0, l], Ω0 = [−r,0] and 0< ε≤ 1 is the perturbation
parameter, a(x)≥α> 0, f (x,u,v), and ϕ(x) are given sufficiently smooth functions satisfying
certain regularity conditions in Ω̄, Ω̄×R2 and Ω0 respectively, to be specified and r is a constant
delay, which is independent of ε, and A is a given constant and furthermore

0≤ ∂ f
∂u

≤ b∗ <∞,
∣∣∣∣∂ f
∂v

∣∣∣∣≤ c∗ .

It is well known that, for small values of ε, standard numerical methods for solving such
problems are unstable and do not give accurate results. For that reason, it is important to
develop suitable numerical methods for solving these problems, whose accuracy does not depend
on the parameter value ε, i.e., methods that are convergent ε-uniformly. These include fitted
finite difference methods, finite element methods using special elements such as exponential
elements, and methods which use a priori refined or special non-uniform grids which condense
in the boundary layers in a special manner. The various approaches to the design and analysis
of appropriate numerical methods for singularly perturbed differential equations can be found
in [2, 8, 10, 20] and the references therein. The numerical method presented here comprises a
fitted difference scheme on a uniform mesh. We have derived this approach on the basis of the
method of integral identities with the use of interpolating quadrature rules with the weight
and remainder terms in integral form. This results in a local truncation error containing only
first order derivatives of exact solution and hence facilitates examination of the convergence.
The solution of a singularly perturbed problem of the form (1.1)-(1.2) normally has a boundary
layer (at x = 0 for a(x)≥α1 > 0 or at x = l for a(x)≤α2 < 0) [8, 12].

The present paper is organized as follows. In Section 2, we state some important properties
of the exact solution. The description the finite difference discretization have been given in
Section 3. In Section 4, we present the error analysis for the approximate solution. In Section 5,
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we formulate the iterative algorithm for solving the discrete problem and present numerical
results which validate the theoretical analysis computationally. The paper ends with a summary
of the main conclusion.

Notation. Throughout the paper, C denotes a generic positive constant independent of ε and
the mesh parameter. Some specific, fixed constants of this kind are indicated by subscripting C.
For any continuous function g(x) denote norms which

‖g‖∞ ≡ ‖g‖∞,Ω̄ = max
0≤x≤l

|g(x)| , ‖g‖1 ≡ ‖g‖1,Ω =
∫ l

0
|g(x)|dx,

‖g‖∞,k ≡ ‖g‖∞,Ω̄k
, ‖g‖1,k ≡ ‖g‖1,Ωk

, k = 0,1,2.

2. Properties of the Exact Continuous Solution

Here we give some properties of the solution of (1.1)-(1.2), which are needed in later sections for
the analysis of appropriate numerical solution.

Lemma 2.1. Let a(x) ∈ C(Ω̄), f (x, ·, ·) ∈ C1(Ω̄,R2), ϕ(x) ∈ C(Ω0) and

ρ :=α−1c∗(l− r)< 1. (2.1)

Then for the solution u(x) of the problem (1.1)-(1.2) the following estimates hold:

‖u‖∞ ≤ C0, (2.2)

where

C0 = (|ϕ(0)|+ |A|+α−1‖F‖1 +α−1c∗‖ϕ‖1,0)(1−ρ)−1,

F(x)=− f (x,0,0),

|u′(x)| ≤ C
(
1+ 1

ε
e−

αx
ε

)
, 0≤ x ≤ l, (2.3)

providing that ∂ f
∂x (x,u,v)is bounded for x ∈ Ω̄ and |u|, |v| ≤ C0.

Proof. We rewrite (1.1) in the form

εu′′+a (x)u′−b (x)u+ c(x)u(x− r)= F (x) , (2.4)

with

b(x)= ∂ f
∂u

(x, ũ, ṽ), c(x)= ∂ f
∂v

(x, ũ, ṽ),

ũ = γu, ṽ = γu(x− r), (0< γ< 1)-intermediate values.

After using the Maximum Principle for the differential operator L∗u = εu′′+a(x)u′−b(x)u, with
first type boundary conditions, we get |u(x)| ≤ w(x), where w(x) is the solution of the BVP:

−εw′′−a(x)w′ = |c(x)u(x− r)|− |F(x)|,
|w(0)| = |ϕ(0)|, |w(l)| = |A| .

The further analysis is similar to that of [1].
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3. Discretization
In what follows, we denote by ω a uniform mesh on Ω :

ω= {xi = ih, i = 1,2, . . . , N −1; h = l/N}

and ω̄=ω∪{x = 0, l}. For simplicity, we will suppose that r
l N = N0 is integer, i.e., xN0 = r. Before

describing our numerical method, we introduce some notation for mesh functions. For any mesh
function g(x), we use

g i = g(xi), g x̄,i = (g i − g i−1)/h, gx,i = (g i+1 − g i)/h,

g0
x,i

= (g i+1 − g i−1)/(2h), g x̄x,i = (g i+1 −2g i + g i−1)/h2,

‖g‖∞ ≡ ‖g‖∞,ω̄ = max
0≤i≤N

|g i|, ‖g‖1 = ‖g‖1,ω =
N−1∑
i=1

h|g i| .

The approach of generating difference method is through the integral identity

h−1
∫ xi+1

xi−1

Lu(x)ψi(x)dx = 0 , i = 1,2, . . . , N −1

with basis functions

ψi(x)=


ψ(1)

i (x), xi−1 < x < xi,

ψ(2)
i (x), xi < x < xi+1,

0, x ∉ (xi−1, xi+1),

where ψ(1)
i (x) and ψ(2)

i (x) are the solutions of the following problems, respectively

εψ′′(x)−aiψ
′(x)= 0, xi−1 < x < xi,

ψ(xi−1)= 0,ψ(xi)= 1,

εψ′′(x)−aiψ
′(x)= 0, xi < x < xi+1,

ψ(xi)= 1,ψ(xi+1)= 0.

The functions ψ(1)
i (x) and ψ(2)

i (x) can be explicitly expressed as

ψ(1)
i (x)= eai(x−xi−1)/ε−1

eaih/ε−1
, ψ(2)

i (x)= 1− e−ai(xi+1−x)/ε

1− e−aih/ε ,

which, clearly, satisfy

h−1
∫ xi+1

xi−1

ψi(x)dx = 1.

To be consistent with [1], we obtain

εθiuxx,i +aiu0
x,i

+ f (xi,ui,ui−N0)+Ri = 0, i = 1,2, . . . , N −1,

where

θi = γi coth(γi), γi = aih/(2ε), (3.1)

and with remainder term

Ri = h−1
∫ xi+1

xi−1

[a(x)−a(xi)]u′(x)ψi(x)dx+h−1
∫ xi+1

xi−1

dxψi(x)
∫ xi+1

xi−1

d
dx

f (ξ,u(ξ),u(ξ− r))K∗
0,i(x,ξ)dξ,

(3.2)
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K∗
0,i(x,ξ)= T0(x−ξ)−T0(xi −ξ), 1≤ i ≤ N −1,

T0(λ)= 1, λ≥ 0; T0(λ)= 0, λ< 0.

Based on foregoing, we propose the following difference scheme for approximating (1.1)-(1.2)

εθi yx̄x,i +ai y0
x,i

+ f (xi, yi, yi−N0)= 0 , 0< i < N, (3.3)

yi =ϕi , −N0 ≤ i ≤ 0 , yN = A, (3.4)

where θ is given by (3.1).

4. Error Analysis

Let zi = yi −ui . Then the error in the numerical solution satisfies

εθi zx̄x,i +ai z0
x,i

+ f (xi, yi, yi−N0)− f (xi,ui,ui−N0)= Ri, 0< i < N, (4.1)

zi = 0, −N0 ≤ i ≤ 0; zN = 0. (4.2)

where the truncation error Ri is given by (3.2).

Lemma 4.1. If a(x) ∈ C(Ω̄), f (x, ·, ·) ∈ C1(Ω̄,R2) and ϕ(x) ∈ C1(Ω0), then for the truncation error
Ri we have

‖R‖1 ≤ Ch. (4.3)

Proof. From

|Ri| ≤ h−1
∫ xi+1

xi−1

|[a(x)−a(xi)]u′(x)ψi(x)|dx

+h−1
∫ xi+1

xi−1

dxψi(x)
∫ xi+1

xi−1

d
dx

| f (ξ,u(ξ),u(ξ− r))|dξ,
taking also into account that 0≤ψi(x)≤ 1, it is not hard to get

|Ri| ≤
{

Ch(h−1
∫ xi+1

xi−1

|u′(x)|dx) +
∫ xi+1

xi−1

∣∣∣∣∂ f (ξ,u(ξ),u(ξ− r))
∂ξ

∣∣∣∣dξ

+
∫ xi+1

xi−1

∣∣∣∣∂ f
∂u

du(ξ)
dξ

+ ∂ f
∂v

du(ξ− r)
dξ

∣∣∣∣dξ
}

and

|Ri| ≤ C
{

h+
∫ xi+1

xi−1

(|u′(ξ)|+ |u′(ξ− r)|)dξ
}

.

Hence,

‖R‖1 ≤ Ch
N−1∑
i=1

(
h+

∫ xi+1

xi−1

(|u′(ξ)|+ |u′(ξ− r)|)dξ
)

≤ Ch
(
1+

∫ l

0
|u′(x)|dx+

∫ l

0

∣∣u′(ξ− r)
∣∣dξ

)
and, after replacing s = ξ− r in second integral, this reduces to

‖R‖1 ≤ Ch
(
1+

∫ l

0
|u′(x)|dx+

∫ l−r

−r
|u′(s)|ds

)

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 1, pp. 191–199, 2017



196 A Uniform Convergent Method for Singularly Perturbed Nonlinear . . . : E. Cimen and G. M. Amiraliyev

≤ Ch
(
1+

∫ l

0
|u′(x)|dx+

∫ 0

−r
|ϕ′(x)|dx+

∫ l−r

0
|u′(x)|dx

)
and using Lemma 2.1, we obtain

‖R‖1 ≤ Ch
(
1+ 1

ε

∫ l

0
e−

αx
ε dx+

∫ 0

−r
|ϕ′(x)|dx+ 1

ε

∫ l−r

0
e−

αx
ε ds

)
≤ Ch

(
1+α−1(1− e−

αl
ε )+‖ϕ′‖1,0 +α−1(1− e−

α(l−r)
ε )

)
=O(h).

Lemma 4.2. Let zi be the solution (4.1)-(4.2) and (2.1) holds true. Then

‖z‖∞,ω ≤α−1(1−ρ)−1 ‖R‖1,ω . (4.4)

Proof. (4.1) can be rewritten as

εθi zx̄x,i +ai z0
x,i

− b̃i zi + c̃i zi−N0 = Ri , 0< i < N,

where

b̃i = ∂ f
∂u

(xi, ỹi, ỹi−N0), c̃i = ∂ f
∂v

(xi, ỹi, ỹi−N0),

ỹi, ỹi−N0 intermediate points called for by the mean value theorem.

We here will use the discrete Green’s function Gh(xi,ξ j) for the operator

`∗zi :=−εθi zx̄x,i −ai z0
x,i

, 1≤ i ≤ N −1,

z0 = zN = 0.

As a function of xi for fixed ξ j this function is being defined as

`∗Gh(xi,ξ j)= δh(xi,ξ j), xi ∈ω, ξ j ∈ω,

Gh(0,ξ j)=Gh(l,ξ j), ξ j ∈ω,

where δh(xi,ξ j)= h−1δi j and δi j is the Kronecker delta. In the analogous manner as in [3] one
can show that 0≤Gh(xi,ξ j)≤α−1. Using Maximum Principle for the `zi := εθi zx̄x,i+ai z0

x,i
− b̃i zi

and also the Green’s function Gh(xi,ξ j), we obtain the following relation for solution of problem
(4.1)-(4.2)

|zi| ≤
N−1∑
j=1

hGh(xi,ξ j)|c̃ j z j−N0 −R j|, xi ∈ω. (4.5)

Then from (4.5) it follows that

‖z‖∞,ω ≤α−1

{
c∗

N−1∑
j=1

h|z j−N0 |+‖R‖1,ω

}
≤α−1c∗

N−1∑
j=1

h|z j−N0 |+α−1‖R‖1,ω

and after replacing j−N0 = k, we have

‖z‖∞,ω ≤α−1c∗
N−N0−1∑
k=1−N0

h |zk|+α−1 ‖R‖1,ω =α−1c∗
N−N0−1∑

k=1
h |zk|+α−1 ‖R‖1,ω

≤α−1c∗(N −N0 −1)h‖z‖∞,ω+α−1 ‖R‖1,ω

≤ ρ‖z‖∞,ω+α−1 ‖R‖1,ω ,

which implies validity of (4.4).
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Now we give the main convergence result.

Theorem 4.3. Let u be the solution of (1.1)-(1.2) and y the solution (3.3)-(3.4). Then

‖y−u‖∞,ω̄ ≤ Ch.

Proof. This follows immediately by combining previous lemmas.

5. Numerical Results
In this section, we present numerical experiments in order to illustrate the method described
above. We solve the nonlinear problem (3.3)-(3.4) using the following quasi-linearization
technique:

εθi y(n)
x̄x,i +ai y(n)

0
x,i

+ f (xi, y(n−1)
i , y(n−1)

i−N0
)+ ∂ f

∂y
(xi, y(n−1)

i , y(n−1)
i−N0

)[y(n)
i − y(n−1)

i ]= 0 , 0< i < N, (5.1)

y(n)
i =ϕi , −N0 ≤ i ≤ 0 , y(n)

N = A, (5.2)

where θ is given by (3.1) and n = 1,2, . . . ; y(0)
i given 0< i < N . For the obtaining y(n)

i , n = 1,2, . . .
is being also used algorithm from [1].

We consider the test problem:

εu′′(x)+8(x2 +9)u′(x)+cosh(u(x−1))= 0, 0< x < 3
2

subject to the interval and boundary conditions

u(x)= x2, −1≤ x ≤ 0 ; u(3/2)= 2.

The initial guess in iteration process is taken as y(0)
i = x2

i according to (2.2) and stopping criterion
is

max
i

|y(n) − y(n−1)| ≤ 10−5.

The exact solution of our test problem is unknown. Therefore, we use the double mesh principle
to estimate the errors and compute the experimental rates of convergence in our computed
solutions. That is, we compare the computed solutions with the solutions on a mesh that is
twice as fine (see [4, 8]). The error estimates obtained in this way are denoted by:

eN
ε =max

i
|yε,Ni −yε,2N

2i |.
The convergence rates are

pN
ε = log2

(
eN
ε /e2N

ε

)
.

Approximations to the ε-uniform rates of convergence are estimated by

eN =max
ε

eN
ε .

The corresponding ε-uniform convergence rates are computed using the formula

pN = log2
(
eN /e2N)

.

The resulting errors and the corresponding numbers for ε = 2−i , i = 2,4, . . . ,16 are listed in
Table 1.
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Table 1. Approximate errors, computed ε-uniform errors and convergence rates on ωN

ε N0 = 32 N0 = 64 N0 = 128 N0 = 256 N0 = 512 N0 = 1024
2−2 6.25874E-5 2.75894E-5 8.62488E-6 2.32606E-6 5.92343E-7 1.48898E-7

1.18 1.68 1.89 1.97 1.99
2−4 6.38614E-5 3.33762E-5 1.67126E-5 6.99265E-6 2.20640E-6 5.94527E-7

0.94 1.00 1.26 1.66 1.89
2−6 6.38614E-5 3.33837E-5 1.70649E-5 8.62507E-6 4.24706E-6 1.76472E-6

0.94 0.97 0.98 1.02 1.27
2−8 6.38614E-5 3.33837E-5 1.70649E-5 8.62698E-6 4.33728E-6 2.17412E-6

0.94 0.97 0.98 0.99 1.00
2−10 6.38614E-5 3.33837E-5 1.70649E-5 8.62698E-6 4.33728E-6 2.17461E-6

0.94 0.97 0.98 0.99 1.00
2−12 6.38614E-5 3.33837E-5 1.70649E-5 8.62698E-6 4.33728E-6 2.17461E-6

0.94 0.97 0.98 0.99 1.00
2−14 6.38614E-5 3.33837E-5 1.70649E-5 8.62698E-6 4.33728E-6 2.17461E-6

0.94 0.97 0.98 0.99 1.00
2−16 6.38614E-5 3.33837E-5 1.70649E-5 8.62698E-6 4.33728E-6 2.17461E-6

0.94 0.97 0.98 0.99 1.00
eN 6.38614E-5 3.33837E-5 1.70649E-5 8.62698E-6 4.33728E-6 2.17461E-6
pN 0.94 0.97 0.98 0.99 1.00

6. Conclusion
In this paper, we have developed a finite difference method for solving the singularly perturbed
boundary-value problem for a nonlinear second order delay differential equation. This method
was based on an exponentially fitted difference scheme on a uniform mesh. From the method,
first order convergence in the discrete maximum norm, independently of the perturbation
parameter resulted. The approximate errors and the rates of convergence are computed for
different values of ε and N in Table 1. Numerical results were carried out to show the efficiency
and accuracy of the method. Theoretical results represented undergoing more complicated delay
problems.
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