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1. Introduction
The concept of soft sets was first introduced by Molodtsov [11] in 1999 as a general mathematical
tool for dealing with uncertain objects. In [12], Molodtsov successfully applied the soft set
theory in several directions, such as Smoothness, Gametheory, Operations research, Riemann
integration and so on. After the introduction of soft sets [10], Shabir and Naz [14] initiated the
study of soft topological spaces. Consequently the basic properties of soft sets in soft topological
spaces were studied by several authors [1–3,15,16]. The notion of soft generalized closed sets
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was introduced by Kannan in [7]. The concept of soft g∗ closed sets was introduced by Kalavathi
et al. [8]. The notion of soft ideal in soft set theory was first given by Kandil et al. [6]. They
also introduced soft local function in soft ideal topological spaces. Kale and Guler [9] studied
the properties of soft ideal topological spaces. Then, Mustafa and Sleim in [13] introduced a
different version of soft ideal. The concepts which are introduced in [4] were extended to soft
ideal in [5].

2. Preliminaries
Definition 2.1 ([11]). Let X be an initial universal set and E be a set of parameters. Let P(X )
denote the power set of X and A be a non-empty subset of E. A pair (F, A) denoted by FA is
called a soft set over X , where F is a mapping given by F : A → P(X ). In other words, a soft set
over X is a parametrized family of subsets of the universal set X . For a particular e ∈ A, F(e)
may be considered the set of e-approximate elements of the soft set (F, A) and if e ∉ A, then
F(e) = φ i.e. FA = {F(e) : e ∈ A ⊆ E,F : A → P(X )}. The family of all these soft sets denoted by
SS(X )A .

Definition 2.2 ([10]). Let FA,GB ∈ SS(X )E . Then FA is said to be a soft subset of GB, denoted
by FA⊆̃GB, if

(1) A ⊆ B, and

(2) F(e)⊆̃G(e), for all e ∈ A.

In this case, FA is said to be a soft subset of GB and GB is said to be a soft superset of FA ,
GB⊇̃FA .

Definition 2.3 ([1]). The complement of a soft set (F, A), denoted by (F, A)′, is defined by
(F, A)′ = (F ′, A), F ′ : A → P(X ) is a mapping given by F ′(e) = X \ F(e), for all e ∈ A and F ′ is
called the soft complement function of F . Clearly, (F ′)′ is the same as F and ((F, A)′)′ = (F, A).

Definition 2.4 ([14]). The difference of two soft sets (F,E) and (G,E) over the common universal
set X , denoted by (F,E)\ (G,E) is the soft set (H,E) where for all e ∈ E, H(e)= F(e)\G(e).

Definition 2.5 ([14]). Let (F,E) be a soft over X and x ∈ X . We say that x ∈ (F,E) read as x
belongs to the soft set (F,E) whenever x ∈ F(e) for all e ∈ E.

Definition 2.6 ([14]). Let x ∈ X . Then the soft set (x,E) over the common universal set X ,
where xE(e)= {x}, for all e ∈ E, called the singleton soft point and denoted by xE .

Definition 2.7 ([10]). A soft set (F, A) over the common universal set X is said to be a NULL
soft set denoted by φ̃ or φA if for all e ∈ A, F(e)=φ (null set).

Definition 2.8 ([10]). A soft set (F, A) over the common universal set X is said to be an absolute
soft set denoted by X̃ or XA if for all e ∈ A, F(e)= X . Clearly, we have X ′

A =φA and φ′
A = XA .
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Definition 2.9 ([10]). The union of two soft sets (F, A) and (G,B) over the common universal
set X is the soft set (H,C), where C = A∪B and for all e ∈ C,

H(e)=


F(e), e ∈ A \ B,
G(e), e ∈ B \ A,
F(e)∪̃G(e), e ∈ A∩B.

We write (F, A)∪̃ (G,B)= (H,C).

Definition 2.10 ([10]). The intersection of two soft sets (F, A) and (G,B) over the common
universal set X is the soft set (H,C), where C = A∩B and for all e ∈ C, H(e)= F(e)∩̃G(e). We
write (F, A)∩̃(G,B)= (H,C).

Definition 2.11 ([14]). Let τ be a collection of soft sets over a universal set X with a fixed set
of parameters E, then τ ∈ SS(X )E is called a soft topology on X if

(1) X̃ , φ̃ ∈ τ, where φ̃(e)=φ and X̃ (e)= X , for all e ∈ E,

(2) the union of any number of soft sets in τ belongs to τ,

(3) the intersection of any two soft sets in τ belongs to τ.

The triplet (X ,τ,E) is called a soft topological space over X . The members of τ are said to be
soft open sets in X .

Definition 2.12 ([14]). Let (X ,τ,E) be a soft topological space. A soft set (F, A) over the common
universal set X is said to be soft closed set in X , if its complement (F, A)′ is a soft open set.

We denote the set of all soft open sets over X by SO(X ) and the set of all soft closed sets by
SC(X ).

Definition 2.13 ([14]). Let (X ,τ,E) be a soft topological space and (F,E) ∈ SS(X )E . The
soft closure of (F,E), denoted by cl(F,E) is the intersection of all soft closed super sets
of (F,E). Clearly, cl(F,E) is the smallest soft closed set over X which contains (F,E) i.e.
cl(F,E)= ∩̃{(H,E) : (H,E) is soft closed set and (F,E)⊆̃(H,E)}.

Definition 2.14 ([16]). Let (X ,τ,E) be a soft topological space and (F,E) ∈ SS(X )E . The soft
interior of (G,E), denoted by int(G,E) is the union of all soft open subsets of (G,E). Clearly,
int(G,E) is the largest soft open set over X which contained in (G,E) i.e. int(G,E)= ∪̃{(H,E) :
(H,E) is an soft open set and (H,E)⊆̃(G,E)}.

Definition 2.15 ([16]). The soft set (F,E) ∈ SS(X )E is called a soft point in XE if there exist
x ∈ X and e ∈ E such that F(e)= x and F(e′)=φ for each e′ ∈ E \ e, and the soft point (F,E) is
denoted by xe .

Definition 2.16 ([16]). The soft point xe is an element of the soft set (G, A), denoted by
xe ∈ (G, A), if for the element e ∈ A, F(e)⊆̃G(e).
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Definition 2.17 ([16]). A soft set (G,E) in a soft topological space (X ,τ,E) is called a soft
neighborhood (briefly : nbd) of the soft point xe ∈ XE if there exists a soft open set (H,E) such
that xe ∈ (H,E)⊆̃(G,E).

A soft set (G,E) in a soft topological space (X ,τ,E) is called a soft neighborhood of the soft set
(F,E) if there exists a soft open set (H,E) such that (F,E) ∈ (H,E)⊆̃(G,E). The neighborhood
system of a soft point xe , denoted by Nτ(xe), is the family of all its neighborhoods.

Definition 2.18 ([14]). Let (X ,τ,E) be a soft topological space over the common universal set
X and Y be a non null soft subset of X . Then Ỹ denotes the soft set (Y ,E) over X for which
Y (e)=Y for all e ∈ E.

Definition 2.19 ([14]). Let (X ,τ,E) be a soft topological space over the common universal set
X , (F,E) ∈ SS(X )E and Y be a non null soft subset of X . Then the sub soft set of (F,E) over Y
denoted by (FY ,E), is defined as follows:

FY (e)=Y ∩̃F(e) for all e ∈ E.

In other words (FY ,E)= Ỹ ∩̃(F,E).

Definition 2.20 ([14]). Let (X ,τ,E) be a soft topological space over the common universal set
X and Y be a non null soft subset of X . Then

τY = {(FY ,E) : (F,E) ∈ τ}

is said to be the soft relative topology on Y and (Y ,τY ,E) is called a soft subspace of (X ,τ,E).

Definition 2.21. Let (X ,τ,E) be a soft topological space over the common universal set X and
(F,E) ∈ SS(X ). Then (F,E) is said to be

(1) Soft generalized closed set (soft g closed) [7] in soft topological space (X ,τ,E) if
cl(F,E)⊆̃(U ,E) whenever (F,E)⊆̃ (U ,E) and (U ,E) is soft open set in X .

(2) Soft Regular closed set [2] in a soft topological space if (F,E)= cl(int(F,E)).

(3) Soft Q set [2] in a soft topological space (X ,τ,E) if and only if int(cl(F,E))= cl(int(F,E)).

(4) Soft g∗ closed set [8] in a soft topological space (X ,τ,E) if cl(F,E)⊆̃(U ,E) whenever
(F,E)⊆̃ (U ,E) and (U ,E) is soft g open set in X .

Definition 2.22 ([6]). Let Ĩ be a non-null collection of soft sets over a universal set X with a
fixed set of parameters E, then Ĩ ⊆̃SS(X )E is called a soft ideal on X with a fixed set E if

(1) (F,E) ∈ Ĩ and (G,E) ∈ Ĩ ⇒ (F,E)∪̃(G,E) ∈ Ĩ ,

(2) (F,E) ∈ Ĩ and (G,E)⊆̃ (F,E)⇒ (G,E) ∈ Ĩ ,

i.e. Ĩ is closed under finite soft union and soft subsets.

Definition 2.23 ([6]). Let (X ,τ,E, Ĩ) be a soft topological space with a soft ideal Ĩ over X with
the set of parameters E. Then

(F,E)∗(Ĩ,τ) (or (F∗
E)= ∪̃ {xe ∈ ε : Oxe∩̃(F,E) ∉ Ĩ for all Oxe ∈ τ}
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is called the soft local function of (F,E) with respect to Ĩ and τ, where Oxe is a τ-open soft set
containing xe.

Definition 2.24 ([6]). Let (X ,τ,E, Ĩ) be a soft topological space with a soft ideal Ĩ over
the common universal set X with the set of parameters E. Then the soft closure operator
cl∗ : SS(X )E → SS(X )E defined by:

cl∗(F,E)= (F,E)∪̃ (F,E)∗

satisfies Kuratowski’s axioms.

Definition 2.25 ([6]). Let (X ,τ,E, Ĩ) be a soft topological space with a soft ideal Ĩ over X with
the set of parameters E and cl∗ : SS(X )E → SS(X )E be the soft closure operator. Then there
exists a unique soft topology over X with the same set of parameters E, finer than τ, called the
∗-soft topology, denoted by τ∗(Ĩ) or τ∗, given by

τ∗(Ĩ)= {(F,E) ∈ SS(X )E : cl∗(F,E)′ = (F,E)′} .

Definition 2.26 ([5]). Let (X ,τ,E, Ĩ) be a soft topological space with a soft ideal Ĩ over X . A soft
set (F,E) ∈ SS(X )E is called

(1) Soft pre- Ĩ-closed set if cl(int∗(F,E))⊆̃ (F,E).

(2) Soft α- Ĩ-closed set if cl(int∗(cl((F,E)))⊆̃ (F,E).

(3) Soft semi- Ĩ-closed set if int∗(cl(F,E))⊆̃ (F,E).

(4) Soft β- Ĩ-closed set if int(cl(int∗(F,E))⊆̃ (F,E).

Definition 2.27 ([6]). A soft topological space (X ,τ,E) together with a soft ideal Ĩ is defined as
soft ideal topological space over the common universal set X and it is denoted by (X ,τ,E, Ĩ).

3. Soft Ig∗ closed set in soft ideal topological spaces

Definition 3.1. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X . A soft set (F,E) ∈ SS(X )E

is called a soft Ig closed set if cl∗(F,E)⊆̃(U ,E) whenever (F,E)⊆̃(U ,E) and (U ,E) is a soft open
set.

Definition 3.2. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X . A soft set (F,E) ∈ SS(X )E

is called a soft Ig∗ closed set if cl∗(F,E)⊆̃(U ,E) whenever (F,E)⊆̃(U ,E) and (U ,E) is a soft g
open set.

Theorem 3.3. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X then every soft closed set is
a soft Ig∗ closed set.

Proof. Proof of this theorem is obvious from the definition of soft closed set.

Theorem 3.4. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X . Every soft g∗ closed set is
a soft Ig∗ closed set.
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Proof. Proof of this theorem is obvious from the definition of soft g∗ closed set.

Theorem 3.5. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X, then every soft Ig∗ closed
set is a soft Ig closed set.

Proof. Proof of this theorem is obvious from the definition of soft Ig∗ closed set.

Remark 3.6. The converse of the above theorems need not be true in general as shown from
the following example.

Example 3.7. Let X = {h1,h2,h3},E = {e1, e2} and
τ= {

φ, X̃ , (F1,E), (F2,E), (F3,E), (F4,E), (F5,E), (F6,E), (F7,E), (F8,E)
}

where
(F1,E)= {(e1, {h1}), (e2, {h3})},(F2,E)= {(e1, {h2}), (e2, {h1})},
(F3,E)= {(e1, {h1,h2}), (e2, {h1,h3})},(F4,E)= {

(e1, {h1,h2}), (e2,
{
φ

}
)
}
,

(F5,E)= {
(e1, {h1}), (e2,

{
φ

}
)
}
,(F6,E)= {

(e1, {h2}), (e2,
{
φ

}
)
}
,

(F7,E)= {(e1, {h1,h2}), (e2, {h3})},(F8,E)= {(e1, {h1,h2}), (e2, {h1})}.
Let Ĩ = {

φ, (A1,E), (A2,E), (A3,E)
}

where (A1,E)= {(e1, {h2}), (e2, {h1})},
(A2,E)= {

(e1, {h2}), (e2,
{
φ

}
)
}
,(A3,E)= {

(e1,
{
φ

}
), (e2, {h1})

}
.

Then (X ,τ,E, Ĩ) is a soft ideal topological space over X. A soft set (A,E) = {
(e1, {h2}), (e2,

{
φ

}
)
}

is a soft Ig∗ closed set but not a soft g∗ closed set and soft closed set.A soft set (B,E) =
{(e1, {h1}), (e2, {h2})} is soft Ig closed set but not a soft Ig∗ closed set.

Theorem 3.8. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X. If (A,E)and (B,E) are soft
Ig∗ closed sets, then (A,E)∪̃ (B,E) is also a soft Ig∗ closed set.

Proof. Let (A,E)and (B,E) are soft Ig∗ closed sets in X . Let (A,E)∪̃(B,E)⊆̃(G,E) and (G,E)
is a soft g open set. Then (A,E)⊆̃(G,E) and (B,E)⊆̃(G,E). Since both (A,E) and (B,E)
are soft Ig∗closed sets, then cl∗(A,E)⊆̃(G,E) whenever (A,E)⊆̃ (G,E) and cl∗(B,E)⊆̃(G,E)
whenever (B,E)⊆̃ (G,E). We know that cl∗((A,E)∪̃(B,E)) = ((A,E)∪̃(B,E))∪̃((A,E )̃̃∪ (B,E))∗ =
((A,E)∪̃(B,E))∪̃((A,E)∗∪̃(B,E)∗)= ((A,E)∪̃(A,E)∗)∩̃((B,E)∪̃(B,E)∗)= cl∗(A,E)∪̃cl∗(B,E).

Hence cl∗((A,E)∪̃(B,E)) = cl∗(A,E)∪̃cl∗(B,E)⊆̃(U ,E). Thus (A,E)∪̃ (B,E) is a soft Ig∗ closed
set.

Remark 3.9. The following example shows that the intersection of two soft Ig∗ closed sets need
not be a soft Ig∗ closed set in a soft ideal topological space (X ,τ,E, Ĩ).

Example 3.10. Let X = {h1,h2,h3}),E = {e1, e2} and
τ= {

φ̃, X̃ , (F1,E), (F2,E), (F3,E), (F4,E), (F5,E)
}

where (F1,E)= {(e1, {h1}), (e2, {h2})},
(F2,E)= {(e1, {h3}), (e2, {h3})},(F3,E)= {(e1, {h1,h3}), (e2, {h2,h3})},
(F4,E)= {(e1, {h1,h3}), (e2, {h2})},(F5,E)= {

(e1, {h3}), (e2,
{
φ

}
)
}
.

Let Ĩ = {
φ̃, (A,E), (B,E), (C,E)

}
where (A,E)= {

(e1, {h1,h2}), (e2,
{
φ

}}
,

(B,E)= {
(e1, {h1}), (e2,

{
φ

}
)
}
,(C,E)= {

(e1, {h2}), (e2,
{
φ

}
)
}
.
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Then (X ,τ,E, Ĩ) is a soft ideal topological space over X . Now the soft set(A1,E) =
{(e1, {h1}), (e2, {X })},(A2,E)= {(e1, {h1,h2}), (e2, {h1})}are soft Ig∗ closed sets but their intersection
(A1,E)∩̃(A2,E)is not a soft Ig∗ closed set.

Remark 3.11. In a soft topological space (X ,τ,E, Ĩ), the concept of soft Ig∗ closed sets and soft
semi- Ĩ- closed(soft α- Ĩ- closed, soft pre- Ĩ-closed, soft β- Ĩ-closed) sets are independent. In the
above Example 3.10,

The soft set (D,E)= {(e1, {h3}), (e2, {h1,h3})} is a soft semi- Ĩ-closed set but not a soft Ig∗ closed set.
The soft set (G,E)= {(e1, {h2}), (e2, {h1,h2})} is a soft Ig∗ closed set but not a soft semi- Ĩ-closed
set.

The soft set (H,E) = {(e1, {h2}), (e2, {h3})} is a soft pre- Ĩ-closed set but not a soft Ig∗ closed set.
The soft set (I,E)= {(e1, {h2}), (e2, {X })} is a soft Ig∗ closed set but not a soft pre- Ĩ-closed set.
The soft set (J,E)= {

(e1, {h2}), (e2,
{
φ

}
)
}

is a soft α- Ĩ-closed set but not a soft Ig∗ closed set. The
soft set(K ,E)= {

(e1, {h1}), (e2,
{
φ

}
)
}

is a soft Ig∗ closed set but not a soft α- Ĩ-closed set.

The soft set (L,E)= {(e1, {h1,h2}), (e2, {h2})} is a soft β- Ĩ-closed set but not a soft Ig∗ closed set.
The soft set (G,E)= {(e1, {h2,h3}), (e2, {h1})} is a soft Ig∗ closed set but not a soft β- Ĩ-closed set.

Theorem 3.12. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X . If (A,E) is a soft Ig∗

closed set in X and (A,E)⊆̃ (B,E)⊆̃cl∗(A,E), then (B,E) is a soft Ig∗ closed set.

Proof. Suppose that (A,E) is a soft Ig∗ closed set in X and (A,E)⊆̃ (B,E)⊆̃cl∗(A,E). Let
(B,E)⊆̃ (U ,E) and (U ,E) is a soft g open set in X . Since (A,E) is a soft Ig∗

closed, hence cl∗(A,E)⊆̃ (U ,E) whenever (A,E)⊆̃(U ,E). Since (B,E)⊆̃cl∗(A,E), hence
cl∗(B,E)⊆̃cl∗(A,E)⊆̃ (U ,E). Thus (B,E) is a soft Ig∗ closed set.

Theorem 3.13. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X. A soft set (A,E) is a soft
Ig∗ closed set if and only if cl∗(A,E)\ (A,E) contains null soft g closed set.

Proof. Suppose that (A,E) is soft Ig∗ closed set in X. Let (F,E) be a non null soft
g closed set such that (F,E)⊆̃cl∗(A,E) \ (A,E). Then (F,E)′ is a soft g open set. Now
(A,E)⊆̃(F,E)′ and (A,E)⊆̃cl∗(A,E). Since (A,E) is a soft g∗ closed set, cl∗(A,E)⊆̃(F,E)′. Hence
(F,E)⊆̃(cl∗(A,E))′. Thus (F,E) is null soft g closed set. Conversely, suppose cl∗(A,E) \ (A,E)
contains only null soft g closed set (F,E). We have (F,E)′ is a soft g open set in X and
(F,E)⊆̃cl∗(A,E) and (F,E)⊆̃(A,E)′. Hence (A,E)⊆̃(F,E)′, since (F,E) is null soft g closed set.
Hence cl∗(A,E)⊆̃(F,E)′.

Theorem 3.14. Let(X ,τ,E, Ĩ) be a soft ideal topological space over X then either eF is soft g
closed set or X̃ \ eF is soft Ig∗ closed set.

Proof. If suppose eF is not a soft g closed set, then X̃ \ eF is not a soft g open set. Since X̃ is
the only soft g open set containing X̃ \ eF . Hence X̃ \ eF is a soft Ig∗ closed set.
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Theorem 3.15. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X. If (A,E)is soft open and
soft g∗ closed set in(X ,τ,E, Ĩ), then the following conditions are hold.

(1) (A,E) is soft closed set.

(2) (A,E)is soft Ig∗ closed set.

(3) (A,E) is soft

(4) (A,E) is soft regular closed set.

(5) (A,E) is soft Q set.

Proof. Proof is an immediate consequence of its definitions.

Theorem 3.16. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X and (A,E)⊆̃Ỹ ⊆̃X̃ , Ỹ is a
soft subspace of X̃ . Suppose that (A,E) is a soft Ig∗ closed set in (X ,τ,E, Ĩ), then (A,E) is a soft
Ig∗ closed set relative to Ỹ .

Proof. Suppose (A,E) be a soft set in (Y ,τY ,E, ĨY ) such that (A,E) is a soft Ig∗ closed set
in (X ,τ,E, Ĩ). Let (A,E)⊆̃Ỹ ∩̃(G,E) where (G,E) is a soft g open set. Then (A,E)⊆̃(G,E) and
cl∗(A,E)⊆̃(G,E). This implies that Ỹ ∩̃cl∗(A,E)⊆̃Ỹ

⋂
(G,E). Thus (A,E) is a soft Ig∗ closed set

relative to Ỹ .

Theorem 3.17. If (A,E) is a soft Ig∗ closed set and (F,E) is a soft closed set in a soft ideal
topological space (X ,τ,E, Ĩ) over X, then (A,E)∩̃(F,E) is a soft Ig∗ closed set.

Proof. Suppose(A,E)∩̃(F,E)⊆̃(G,E)and(G,E)is soft g open set. Then (A,E)⊆̃(G,E)∪̃
(F,E)′. Since (A,E) is a soft Ig∗ closed set, we have cl∗(A,E)⊆̃(G,E)∪̃(F,E)′ whenever
(A,E)⊆̃(G,E)∪̃(F,E)′. Now, cl∗((A,E)∩̃(F,E))= ((A,E)∩̃(F,E))∪̃((A,E)∪̃(F,E))∗⊆̃((A,E)
∩̃(F,E))∪̃((A,E)∗∩̃(F,E)∗)= ((A,E)∪̃(A,E)∗)∩̃((F,E)∪̃(F,E)∗)=cl∗(A,E)∩̃cl∗(F,E). This implies
that cl∗((A,E)∩̃ (F,E))⊆̃cl∗(A,E)∩̃cl∗(F,E)⊆̃(G,E)∩̃(F,E)⊆̃(G,E)⊆̃(G,E)∪̃(F,E)′.
Thus cl∗((A,E)∩̃(F,E))⊆̃(G,E)∪̃(F,E)′. Hence (A,E)∩̃(F,E) is a soft Ig∗ closed set.

Definition 3.18. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X. The soft set (A,E) is
called a soft Ig∗ open set if its complement (A,E)′ is a soft Ig∗ closed set in (X ,τ,E, Ĩ).
sIg∗O(X ) denotes the collection of all soft Ig∗ open sets, and sIg∗O(X ,h) is the collection of all
soft Ig∗ open sets containing the point h of X in the soft ideal topological space (X ,τ,E, Ĩ).

Remark 3.19. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X then every soft open set is
a soft Ig∗ open set and every soft Ig∗ open set is a soft Ig open set. But the converse may not be
true.

Example 3.20. Let X = {h1,h2,h3},E = {e1, e2} and
τ= {

φ, X̃ , (F1,E), (F2,E), (F3,E), (F4,E), (F5,E), (F6,E), (F7,E)
}

where
(F1,E)= {(e1, {h1,h3}), (e2, {h1})},(F2,E)= {(e1, {h1}), (e2, {h2,h3})},
(F3,E)= {(e1, {h2}), (e2, {h1})},(F4,E)= {(e1, {h1}), (e2, {h3})},
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(F5,E)= {(e1, {h1,h2}), (e2, {h1,h3})},(F6,E)= {(e1, {X }), (e2, {h1,h3})},
(F7,E)= {(e1, {h1,h2}), (e2, {X })}. Let Ĩ = {

φ, (A1,E), (A2,E), (A3,E)
}

where
(A1,E)= {(e1, {h1}), (e2, {h3})},(A2,E)= {

(e1, {h1}), (e2,
{
φ

}
)
}
,

(A3,E)= {
(e1,

{
φ

}
), (e2, {h3})

}
. Here the soft set (A,E)= {

(e1, {h1}), (e2,
{
φ

}
)
}

is a soft Ig∗ open set,
but it is not a soft open set and the soft set (B,E)= {(e1, {h3}), (e2, {h1})} is a soft Ig open set, but
it is not a soft Ig∗ open set.

Theorem 3.21. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X . A soft set (F,E) ∈ SS(X )E

is called a soft Ig∗ open set if and only if (U ,E)⊆̃int∗(F,E) whenever (U ,E)⊆̃(F,E) and (U ,E) is
a soft g closed set in X .

Proof. Proof follows immediately from the definition of soft Ig∗ closed set.

Definition 3.22. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X . Let (A,E) ∈ SS(X )E .
The union of all soft Ig∗ open sets contained in (A,E) is called the soft Ig∗ interior of (A,E) and
is denoted by sIg∗int(A,E).

Definition 3.23. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X . Let (A,E) ∈ SS(X )E .
The intersection of all soft Ig∗ closed sets containing (A,E) is called the soft Ig∗ closure of (A,E)
and is denoted by sIg∗cl(A,E). For a soft set (A,E) ∈ SSXE , we have

int(A,E)⊆̃sIg∗int(A,E)⊆̃sI gint(A,E)⊆̃(A,E)⊆̃sI gcl(A,E)⊆̃sIg∗cl(A,E)⊆̃cl(A,E).

Theorem 3.24. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X then for any two soft
subsets (A,E) and (B,E) we have

(1) (A,E) is soft Ig∗ open if and only if (A,E)= sIg∗int(A,E)

(2) (A,E) is soft Ig∗ closed if and only if (A,E)= sIg∗cl(A,E)

(3) (A,E)⊆̃(B,E) then sIg∗int(A,E)⊆̃sIg∗int(B,E) and sIg∗cl(A,E)⊆̃sIg∗cl(B,E)

(4) sIg∗int(A,E)∪̃sIg∗int(B,E)⊆̃sIg∗int((A,E)∪̃(B,E))

(5) sIg∗cl((A,E)∩̃(B,E))⊆̃sIg∗cl((A,E)∩̃sIg∗cl(B,E)

(6) sIg∗cl(A,E)∪̃sIg∗cl(B,E)= sIg∗cl((A,E)∪̃(B,E))

(7) sIg∗int(A,E)∩̃sIg∗int(B,E)= sIg∗int((A,E)∩̃(B,E))

(8) sIg∗cl(X̃ \ (A,E))= X̃ \sIg∗int(A,E)

(9) sIg∗int(X̃ \ (A,E))= X̃ \sIg∗cl(A,E)

(10) sIg∗cl(sIg∗cl(A,E))= sIg∗cl(A,E)

(11) sIg∗int(sIg∗int(A,E))= sIg∗int(A,E)

(12) sIg∗int(φ,E)= (φ,E) and sIg∗int(X ,E))= (X ,E)

(13) sIg∗cl(φ,E)= (φ,E) and sIg∗cl(X ,E)= (X ,E)

(14) (sIg∗cl(A,E))′⊂̃sIg∗cl(A,E)′

(15) sIg∗int(A,E)′⊂̃(sIg∗int(A,E))′
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Remark 3.25. The following example shows that the converse of (3) to (5) and (14) to (15) of
the above theorem are need not be true in a soft ideal topological space (X ,τ,E, Ĩ).

Example 3.26. Let X = {h1,h2,h3}) and E = {e1, e2} and τ= {φ, X̃ , (F1,E), (F2,E), (F3,E)} where
(F1,E)= {(e1, {h1,h2}), (e2, {h1,h3})},(F2,E)= {(e1, {h2}), (e2, {h3})}, (F3,E)= {

(e1,
{
φ

}
), (e2, {h3})

}
.

Let Ĩ = {
φ̃, (A,E)

}
where (A,E)= {

(e1, {h1}), (e2,
{
φ

}
)
}
. Then (X ,τ,E, Ĩ) is a soft ideal topological

space over X .

Now (A,E)= {(e1, {h1}), (e2, {h2})}⊆̃(B,E)= {(e1, {h1}), (e2, {h2,h3})} but sIg∗int(B,E)˜6⊂sIg∗int(A,E)
and sIg∗cl(B,E)˜6⊂ sIg∗cl(A,E).

For this soft sets (A,E)= {(e1, {h3}), (e2, {h1})},(B,E)= {(e1, {h1,h3}), (e2, {h3})},
(C,E)= {(e1, {h1,h3}), (e2, {h3})} and (D,E)= {(e1, {h2}), (e2, {X })}, we have
sIg∗cl(A,E)∩̃sIg∗cl(B,E)˜6⊂sIg∗cl((A,E)∩̃(B,E)) ,
sIg∗int((C,E)∪̃(D,E))˜6⊂sIg∗int((C,E)∪̃sIg∗int(D,E),
sIg∗cl(A,E)′˜6⊂(sIg∗cl(A,E))′ and (sIg∗int(A,E))′˜6⊂sIg∗int(A,E)′.

Theorem 3.27. Let (X ,τ,E, Ĩ) be a soft ideal topological space over X . Let (A,E) ∈ SSXE then
eF ∈ sIg∗cl(A,E) if and only if every soft Ig∗ open set (U ,E) of X containing eF , (A,E)∩̃(U ,E) 6=φ.

Proof. Suppose that eF ∈ sIg∗cl(A,E) and (U ,E) is any soft Ig∗ open set containing eF

such that (A,E)∩̃(U ,E) = φ. Then X̃ \ (U ,E) is soft Ig∗ closed set containing (A,E). Thus
sIg∗cl(A,E)⊆̃X̃ \ (U ,E), which is a contradiction.

Conversely, assume that for every sIg∗ open set of X containing eF , whose intersection with
(A,E) is non empty. Suppose that eF ∉ sIg∗cl(A,E) and (V ,E) is soft Ig∗ closed set containing
(A,E). Then eF⊆̃X̃ \ (V ,E) and eF ∉ (V ,E). Thus X̃ \ (V ,E) is soft Ig∗ open set containing eF

and X̃ \ (V ,E)∩̃(A,E)=φ, which is a contradiction.
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