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Abstract. Wavelet transforms plays an important role in image compression techniques that
developed recently. Here three 2-D functions are considered which are approximated and compressed
using multilevel discrete 2-D wavelet transforms like Haar, Daubechies, Coiflet and Symlet. The
images that are compressed are tested for quality using the error metrics like mean square error
(MSE), peak to signal noise ratio (PSNR), maximum error (MAXERR), L2RAT, compression ratio and
bit per pixel. The evaluation of the above mentioned wavelets is synthesized in terms of experimental
results which demonstrates that Haar wavelets provides high compression ratios for 2-D exponential
functions and the product of sine and cosine functions whereas Daubechies wavelet gives good
compression ratio for 2-D periodic function.
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1. Introduction
In storage applications and image transmission the prime constraints are memory and channel
bandwidth. Different types of images are compressed using various methods in compression
techniques. In image compression application, the role of wavelets has become important as the
digital images in the recent years has increased rapidly, which give way to high transmission
and memory cost [1]. One of the most significant applications of wavelet transform is in
medical images and it furnishes a desirable method for compression of biomedical images like
magnetic resonance imaging (MRI), X-ray angiogram (XA) and so on which are extensively
used in medical diagnosis [2], [3]. The amount of image data generated each day in health
care with the improved scanning resolutions and the importance of volumetric image data sets
and handling these images provides the requirement for efficient compression archival and
transmission techniques [4]. Computed Tomography imaging compression can be used when
a medical test obtained through a series of X-ray exposures resulting in 3-D images that aid
medical diagnosis [5]. Since digital images have a high degree of Spatial redundancy, Temporal
redundancy, Spectral redundancy, it can be compressed by eliminating redundant information.
The lossy compression technique gives higher compression rates and the exact data cannot be
reconstructed [6]. Also the human visual system has low sensitivity to some distortion in the
image. By considering these facts, the compression potential is much higher which saves the
amount of storage space as well as the time required for transmission. In reconstructing image
we can achieve higher compression ratio, higher peak signal to noise ratio and low mean square
error.

2. Wavelet Analysis

Wavelet analysis or simply ‘wavelets’ have drawn attention in the recent years and successfully
applied in many applications such as transient signal analysis, image analysis and other signal
processing applications. Wavelet theory has become an active area of research in many fields like
fractals and quantum theory in Physics, harmonic analysis and operator theory in mathematics,
signal processing and data compression in electrical engineering and so on [7]. A wavelet is a
wavelike oscillation with amplitude starts from zero, increases and then decreases again to zero.
Wavelet analysis is similar to Fourier analysis. Fourier transform breaks the signal into a series
of sine waves of different frequencies, whereas wavelet analysis breaks the signal into ‘wavelets’
scaled and shifted versions of the mother wavelet. The wavelet properties of being irregular in
shape and compactly supported that make wavelets an ideal instrument for analyzing signals
of non-stationary nature when compared to the Fourier transform of sine wave which is smooth
and of infinite length. Wavelets are mathematical functions that cut up data into different
frequency components and then study each component with a resolution matched to its scale.

3. Discrete Wavelet Transform
Wavelet based coding provides substantial improvement in picture quality at high compression
ratios mainly due to better energy compaction property wavelet transforms [8]. The discrete
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wavelet transform (DWT) gives sufficient knowledge both for analysis and synthesis of
the original signal with a significant decrease in the computation time. The DWT is an
implementation transform that uses a discrete set of the wavelet scales and translations
of the wavelet transform following some defined rules. The transform decomposes the signal
into a mutually orthogonal set of wavelets, which is the main difference from continuous
wavelet transforming or its implementation for the discrete time series known as discrete-time
continuous wavelet transform [9]. Wavelet coefficients calculated at each scale generate a lot of
awful data. If scales and positions based on powers of 2-called dyadic scales and positions-are
chosen the analysis become more efficient and accurate. Such an analysis is obtained from the
discrete wavelet transform (DWT) [10]. The analysis start from signal ‘ f ’ and results in the
coefficients S(a,b) and is given by

S(a,b)= S( j,k)= ∑
n∈z

f (n)g j,k(n) .

The DWT of an image f(n) is calculated by passing it through a series of filters. First the samples
are passed through a low pass filter with impulse response ‘g’ resulting in a convolution of the
two: ( f ∗ g)[n].

The low frequency content is the most important part in many signals. It identifies the
signal. The high frequency content has less importance. A great deal of study has been done
on image compression and still it is going on. Image compression performance and analysis of
different wavelets have been done in [11]. Yi Zhang and Xing Yuan have proposed fractal image
compression based on wavelet using diamond search and has a drawback in coding of fractal
image which needs more time [12]. A Neuro-Wavelet based approach for image compression
is proposed in [13]. Combination of vector quantization and wavelet transform using RBF
neural network has been proposed in [14]. Bi-orthogonal wavelet based image compression
combined with hierarchical back propagation neural network is presented in [15]. The work on
Neural based image compression gives large compression ratios on reconstructed images, but
the complexity of such techniques is also more. Most of the authors have taken the test images
for their research. This proposed paper approaches simpler technique on image compression
using discrete wavelet transform presented in [16]. The paper extends the study of compression
which is based on different RGB color images which is resized, converted into gray scale image
and performed compression using multilevel discrete wavelet transform. The quality of the
original image and the compressed image is measured using image quality metrics.

4. Image Quality Metric

Peak to Signal Ratio (PSNR)
PSNR is the peak signal to noise ratio in decibels and is given as the ratio between the maximum
possible power of a signal and the power of the distorting noise which affects the quality of its
representation defined by

PSNR= 20log10

( MAX fp
MSE

)
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Mean Square Error (MSE)
The mean square error (MSE) is the squared norm of the cumulative difference between the
compressed image and the original image. It is mathematically given by

MSE= 1
mn

m−1∑
0

n−1∑
0

‖ f (i, j)− g(i, j)‖2

where f is the original image and g is the compressed image. The dimension of the images is
m×n. This MSE should be as low as possible for effective compression.

MAXERR
It is the maximum absolute squared deviation of the data from the approximation.

L2RAT
L2RAT is defined as the ratio of the squared norm of the signal or image approximation to the
input signal or image.

Compression Ratio (CR)
The compression ratio is defined as
CR = the size of the original image/ the size of the compressed image. The ratio provides a hint
of how much compression is achieved for a particular image.

Bit Per Pixel (BPP)
It is defined as the number of bits required to compress each pixel. It should be low to reduce
storage requirements.

5. Image Compression
A wide variety of wavelet based image compression scheme have been reported in the literature
from simple entropy to more complex techniques such as vector quantization adaptive transform,
tree encoding, edge based coding and Huffman coding. Compression is of two types-Lossless
compression and Lossy compression. Lossless compression can be used for compressing binary
data, such as executable, document, etc., and it involves in compressing the data which, when
compressed together will be an accurate reproduction of the original data. In this paper, we use
Lossy compression since image need not be reproduced exactly. As long as the error between the
original image and the compressed image is adequate, an estimate of the original image serves
for most uses. The proposed work is based on the compression performed on three functions
using Haar, Daubechies, Symlet and Coiflet wavelet techniques.

2-D Decaying Continuous Exponential Function

Consider the two dimensional continuous decaying exponential function f (x, y) = −exp(x+y)
2 .

The image is compressed using different wavelet transforms and the results are simulated using
Octave which is an alternate open source to Matlab. The multilevel decomposition is used for
different wavelets and comparative analysis of Coiflet, Symlet, Daubechies and Haarwavelets
are displayed.

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 3, pp. 781–790, 2017



Image Compression of 2-D Continuous Exponential Functions, Continuous. . . : G. K. Jagatheswari et al. 785

 

 

 

Figure 1
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The Octave Pseudo code is given below.

• Load the image.

• Perform single level wavelet decomposition on the image.

• Construct approximation and coefficients.

• Perform multilevel wavelet decomposition and extract the coefficients. Reconstruct the
decomposed values.

• Reconstruct the image from multilevel decomposition.

• Compress the image and calculate the PSNR, MSE, MAXERR and L2RAT.

• Calculate CR and BPP between the original image and compressed image using different
wavelets.

The original image of 2-D decaying exponential function and the compressed images using Haar,
Daubechies, Symlet and Coiflet wavelets are plotted in Figure 1. The image of this function
is generated using octave by considering 201 points which uniformly partitioning the domain
[−1,1] based on a grid measurement of 0.01. By implementing the above code to the image,
compression is done using different wavelets which are shown by Figures 1(b) to 1(e).

Figures 1(a)-(e) represents image compression of the 2-D exponential function using Haar,
db2, Coiflet and Symlet respectively. Figures 1(f) shows comparison of the quality metrics of
different wavelets.

Table 1

Wavelet families PSNR MSE MAXERR L2RAT CR BPP

HAAR 44.8641 2.1216 17.2500 1 7.8278 0.6262

DAUBECHIES 42.7892 3.4210 16.8984 0.9999 5.9143 0.4731

COIFLET 42.4586 3.6916 15.6135 0.9999 5.3223 0.4258

SYMLET 42.7892 3.4210 16.8984 0.9999 5.9143 0.4731

Table 1 clearly indicates that the compression results are good for the continuous exponential
function by Haar wavelet transform as a lesser value for MSE means lower error and a
high value of PSNR. Also the compression ratio is more and Bit per pixel is less for Haar
wavelet transform than other wavelet families. This shows that Haar wavelet is best suited for
compressing the decaying exponential function.

Image Compression of 2-D Continuous Periodic Functions
Consider the 2-D continuous periodic function f (x, y)= exp(x+ y)sin(x+ y). The original image
of 2-D continuous periodic function is plotted in Figure 2 using octave by considering 201
points on a grid measurement of 0.01. Quantitative analysis has been demonstrated at first
decomposition levels of wavelet families by measuring the values of PSNR, MSE, MAXERR and
L2RAT. Qualitative analysis has been done by performing the compressed version of the input
image by DWT technique and comparing it to the original image. The image is compressed
using different wavelets and the results are tabulated below.
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 Figure 2

Figure 2(a) represents the original function f (x, y) = exp(x + y)sin(x + y). Figure 2(b)
represents the comparison of the evaluation parameters of the wavelets used.

Table 2

Wavelet families PSNR MSE MAXER L2RAT CR BPP

HAAR 43.3128 3.0325 14.2500 0.9999 5.8563 0.4685

DAUBECHIES 42.3015 3.8276 13.8339 0.9999 5.8838 0.4707

COIFLET 41.9447 4.1554 15.5751 0.9999 5.3528 0.4282

SYMLET 42.3015 3.8276 13.8339 0.9999 5.8838 0.4707

From the experimental results of Table 2, it is evident that Daubechies wavelet provides
a higher compression ratio than other wavelets and avoids blocking artifacts. Haar wavelets
enable the Haar decomposition to have good time localization, which means that Haar
coefficients are effective for locating jump discontinuities and the evaluation of Haar wavelet of
the continuous periodic function shows that a higher value of PSNR is good because it signifies
that the ratio of Signal to Noise is higher. A compression scheme having a lower MSE and a high
PSNR is obtained and in turn indicates that the compression made by Haar and Daubechies is
a good one. Here signal is the original image and the noise is the error in reconstruction.

Image Compression of 2-D Product of Sine and Cosine Function
Wavelet decomposition and reconstruction have been carried out for the product of sine and
cosine function given by f (x, y)= sin(x+ y)cos(x+ y) which is generated using octave. The data
set consisted of 201 points chosen uniformly by partitioning the domain [−1,1]. The image of
this function is simulated using matlab. The original function is plotted in Figure 3(a).
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Figure 3

Figure 3(a) represents the original function f (x, y) = sin(x + y) ∗ cos(x + y). Figure 3(b)
represents the comparison of the evaluation parameters of the wavelets used.

Table 3

Wavelet families PSNR MSE MAXER L2RAT CR BPP

HAAR 41.0792 5.0718 15.7500 0.9999 5.8487 0.4679

DAUBECHIES 40.7634 5.4543 15.6961 0.9999 5.7877 0.4630

COIFLET 40.8501 5.3465 15.2476 0.9999 5.8075 0.4646

SYMLET 40.7634 5.4543 15.6961 0.9999 5.7877 0.4630

By evaluating the image quality metric, it is found that Haar wavelet gives high PSNR and
high compression ratio when compared with other wavelets like Coiflet, Symlet and Daubechies
as given in Table 3. So Haar wavelet is found suitable for compressing the sine and cosine
function. Also Daubechies and Symlet wavelets give exact identical values for the calculated
quality metrics and this shows that Symlets are another family of Daubechies wavelets thus are
constructed in the same way as Daubechies wavelts. These wavelets can be used interchangeably
while synthesizing the continuous periodic function.

6. Conclusion
In this paper an efficient compression technique based on discrete wavelet transform (DWT)
is proposed and developed. Wavelets are better suited to time-limited data and wavelet based
compression technique maintains better image quality by reducing errors and allows good
localization in both spatial and frequency domain. From the experimental results it is found
that Haar wavelet is best suited for compressing the continuous exponential functions and the
product of sine and cosine functions, whereas Daubechies wavelet families are best suited for
continuous periodic functions. However the Coiflet and Symlet functions do perform better in
statistical terms.It can be concluded that since each wavelet filter gives a different performance
for different fidelity metrics and different images, the compression performance depends on the
size and content of the image and therefore it is appropriate to choose the choice of wavelet based
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on image size and content for the desired quality of reconstructed image. In all the wavelet that
are used for analyzing various 2-D functions, it is observed thatDaubechies and Symlet wavelet
gives exactly identical values for the calculated quality metrics. This is interesting because
the generating functions of the two wavelets are different. So we conclude that the wavelets
of Dabuechies and Symlet can be used interchangeably while analyzing the above discussed
functions.
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