Projective Change between Randers Metric and Special (α, β)-metric

S.K. Narasimhamurthy and D.M. Vasantha

Abstract

In the present paper, we find the conditions to characterize projective change between two (α, β)-metrics, such as special (α, β)-metric, $L=\alpha-\frac{\beta^{2}}{\alpha}+\beta$ and Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ on a manifold with $\operatorname{dim} n \geq 3$, where α and $\bar{\alpha}$ are two Riemannian metrics, β and $\bar{\beta}$ are two non-zero 1 -forms. Further, we study the special curvature properties of two classes of (α, β)-metrics.

1. Introduction

The projective change between two Finsler spaces have been studied by many authors ([3], [12], [10], [13], [15] [20]). An interesting result concerned with the theory of projective change was given by Rapscak's paper [18]. He proved the necessary and sufficient condition for projective change. In 1994, S. Bacso and M. Matsumoto [3] studied the projective change between Finsler spaces with (α, β)-metric. In 2008, H.S. Park and Y. Lee [13] studied on projective changes between a Finsler space with (α, β)-metric and the associated Riemannian metric. The authors Z. Shen and Civi Yildirim [20] studied on a class of projectively flat metrics with constant flag curvature in 2008. In 2009, Ningwei Cui and Yi-Bing Shen [12] studied projective change between two classes of (α, β)-metrics. The author N . Cui (2006) studied S-curvature of some (α, β)-metrics [4]. Some results on a class of (α, β)-metrics with constant flag curvature have been studied recently by Z. Lin (2009) [7].

The first part of the present paper is devoted to the study of projective change between two classes of Finsler spaces with (α, β)-metric (Theorem 3.1). The second part is devoted to investigate the special curvature properties of these Finsler metrics under projective change (Theorem 4.2).

[^0]
2. Preliminaries

The terminology and notations are referred to ([8], [19], [1]). Let $F^{n}=(M, L)$ be a Finsler space on a differential manifold M endowed with a fundamental function $L(x, y)$. We use the following notations:
(a) $g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}, \quad \dot{\partial}_{i}=\frac{\partial}{\partial y^{i}}$,
(b) $C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j}$,
(c) $h_{i j}=g_{i j}-l_{i} l_{j}$,
(d) $\gamma_{j k}^{i}=\frac{1}{2} g^{i r}\left(\partial_{j} g_{r k}+\partial_{k} g_{r j}-\partial_{r} g_{j k}\right)$,
(e) $G^{i}=\frac{1}{2} \gamma_{j k}^{i} y^{j} y^{k}, \quad G_{j}^{i}=\dot{\partial}_{j} G^{i}, \quad G_{j k}^{i}=\dot{\partial}_{k} G_{j}^{i}, \quad G_{j k l}^{i}=\dot{\partial}_{l} G_{j k}^{i}$.

The concept of (α, β)-metric $L(\alpha, \beta)$ was introduced in 1972 by M. Matsumoto and studied by many authors like ([11], [16], [6], [9], [22], [17]). The Finsler space $\left.F^{n}=(M, L)\right)$ is said to have an (α, β)-metric if L is a positively homogeneous function of degree one in two variables $\alpha^{2}=a_{i j}(x) y^{i} y^{j}$ and $\beta=b_{i}(x) y^{i}$. A change $L \rightarrow \bar{L}$ of a Finsler metric on a same underlying manifold M is called projective change if any geodesic in (M, L) remains to be a geodesic in (M, \bar{L}) and viceversa. We say that a Finsler metric is projectively related to another metric if they have the same geodesics as point sets. In Riemannian geometry, two Riemannian metrics α and $\bar{\alpha}$ are projectively related if and only if their spray coefficients have the relation [12]

$$
\begin{equation*}
G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+\lambda_{x^{k}} y^{k} y^{i} \tag{2.1}
\end{equation*}
$$

where $\lambda=\lambda(x)$ is a scalar function on the based manifold, and (x^{i}, y^{j}) denotes the local coordinates in the tangent bundle $T M$.

Two Finsler metrics F and \bar{F} are projectively related if and only if their spray coefficients have the relation [12]

$$
\begin{equation*}
G^{i}=\bar{G}^{i}+P(y) y^{i} \tag{2.2}
\end{equation*}
$$

where $P(y)$ is a scalar function on $T M \backslash\{0\}$ and homogeneous of degree one in y. A Finsler metric is called a projectively flat metric if it is projectively related to a locally Minkowskian metric.

For a given Finsler metric $L=L(x, y)$, the geodesics of L satisfy the following ODEs:

$$
\frac{d^{2} x^{i}}{d t^{2}}+2 G^{i}\left(x, \frac{d x}{d t}\right)=0
$$

where $G^{i}=G^{i}(x, y)$ are called the geodesic coefficients, which are given by

$$
G^{i}=\frac{1}{4} g^{i l}\left\{\left[L^{2}\right]_{x^{m} y^{l}} y^{m}-\left[L^{2}\right]_{x^{l}}\right\}
$$

Let $\phi=\phi(s),|s|<b_{0}$, be a positive C^{∞} function satisfying the following

$$
\begin{equation*}
\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0, \quad\left(|s| \leq b<b_{0}\right) . \tag{2.3}
\end{equation*}
$$

If $\alpha=\sqrt{a_{i j} y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i} y^{i}$ is 1-form satisfying $\left\|\beta_{x}\right\|_{\alpha}<b_{0}$ for all $x \in M$, then $L=\phi(s), s=\beta / \alpha$, is called an (regular) (α, β) metric. In this case, the fundamental form of the metric tensor induced by L is positive definite.

Let $\nabla \beta=b_{i \mid j} d x^{i} \otimes d x^{j}$ be covariant derivative of β with respect to α.
Denote

$$
r_{i j}=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right), \quad s_{i j}=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right)
$$

β is closed if and only if $s_{i j}=0$ [21]. Let $s_{j}=b^{i} s_{i j}, s_{j}^{i}=a^{i l} s_{l j}, s_{0}=s_{i} y^{i}, s_{0}^{i}=s_{j}^{i} y^{j}$ and $r_{00}=r_{i j} y^{i} y^{j}$.

The relation between the geodesic coefficients G^{i} of L and geodesic coefficients G_{α}^{i} of α is given by

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i}+\left\{-2 Q \alpha s_{0}+r_{00}\right\}\left\{\Psi b^{i}+\Theta \alpha^{-1} y^{i}\right\} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
\Theta & =\frac{\phi \phi^{\prime}-s\left(\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}\right)}{2 \phi\left(\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right)} \\
Q & =\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, \\
\Psi & =\frac{1}{2} \frac{\phi^{\prime \prime}}{\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}}
\end{aligned}
$$

Definition 2.1 ([12]). Let

$$
\begin{equation*}
D_{j k l}^{i}=\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(G^{i}-\frac{1}{n+1} \frac{\partial G^{m}}{\partial y^{m}} y^{i}\right) \tag{2.5}
\end{equation*}
$$

where G^{i} are the spray coefficients of L. The tensor $D=D_{j k l}^{i} \partial_{i} \otimes d x^{j} \otimes d x^{k} \otimes d x^{l}$ is called the Douglas tensor. A Finsler metric is called Douglas metric if the Douglas tensor vanishes.

We know that the Douglas tensor is a projective invariant [14]. Note that the spray coefficients of a Riemannian metric are quadratic forms and one can see that the Douglas tensor vanishes form (2.5). This shows that Douglas tensor is a non-Riemannian quantity.

In the following, we use quantities with a bar to denote the corresponding quantities of the metric \bar{L}. First, we compute the Douglas tensor of a general (α, β) metric.
Let

$$
\widehat{G}^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i}+\Psi\left\{-2 Q \alpha s_{0}+r_{00}\right\} b^{i}
$$

Then (2.4) becomes

$$
G^{i}=\widehat{G}^{i}+\Theta\left\{-2 Q \alpha s_{0}+r_{00}\right\} \alpha^{-1} y^{i}
$$

Clearly, G^{i} and \widehat{G}^{i} are projective equivalent according to (2.2), they have the same Douglas tensor.
Let

$$
\begin{equation*}
T^{i}=\alpha Q s_{0}^{i}+\Psi\left\{-2 Q \alpha s_{0}+r_{00}\right\} b^{i} \tag{2.6}
\end{equation*}
$$

Then $\widehat{G}^{i}=G_{\alpha}^{i}+T^{i}$, thus

$$
\begin{align*}
D_{j k l}^{i} & =\widehat{D}_{j k l}^{i} \\
& =\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(G_{\alpha}^{i}-\frac{1}{n+1} \frac{\partial G_{\alpha}^{m}}{\partial y^{m}} y^{i}+T^{i}-\frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i}\right) \\
& =\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(T^{i}-\frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i}\right) . \tag{2.7}
\end{align*}
$$

To simplify (2.7), we use the following identities

$$
\alpha_{y^{k}}=\alpha^{-1} y_{k}, \quad s_{y^{k}}=\alpha^{-2}\left(b_{k} \alpha-s y_{k}\right)
$$

where $y_{i}=a_{i l} y^{l}, \alpha_{y^{k}}=\frac{\partial \alpha}{\partial y^{k}}$. Then

$$
\begin{aligned}
{\left[\alpha Q s_{0}^{m}\right]_{y^{m}} } & =\alpha^{-1} y_{m} Q s_{0}^{m}+\alpha^{-2} Q^{\prime}\left[b_{m} \alpha^{2}-\beta y_{m}\right] s_{0}^{m} \\
& =Q^{\prime} s_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\Psi\left(-2 Q \alpha s_{0}+r_{00}\right) b^{m}\right]_{y^{m}}=} & \Psi^{\prime} \alpha^{-1}\left(b^{2}-s^{2}\right)\left[r_{00}-2 Q \alpha s_{0}\right] \\
& +2 \Psi\left[r_{0}-Q^{\prime}\left(b^{2}-s^{2}\right) s_{0}-Q s s_{0}\right]
\end{aligned}
$$

where $r_{j}=b^{i} r_{i j}$ and $r_{0}=r_{i} y^{i}$. Thus from (2.6), we obtain

$$
\begin{align*}
T_{y^{m}}^{m}= & Q^{\prime} s_{0}+\Psi^{\prime} \alpha^{-1}\left(b^{2}-s^{2}\right)\left[r_{00}-2 Q \alpha s_{0}\right] \\
& +2 \Psi\left[r_{0}-Q^{\prime}\left(b^{2}-s^{2}\right) s_{0}-Q s s_{0}\right] \tag{2.8}
\end{align*}
$$

Now, we assume that the (α, β)-metrics L and \bar{L} have the same Douglas tensor, that is, $D_{j k l}^{i}=\bar{D}_{j k l}^{i}$. Thus from (2.5) and (2.7), we get

$$
\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(T^{i}-\bar{T}^{i}-\frac{1}{n+1}\left(T_{y^{m}}^{m}-\bar{T}_{y^{m}}^{m}\right) y^{i}\right)=0
$$

Then there exists a class of scalar functions $H_{j k}^{i}=H_{j k}^{i}(x)$, such that

$$
\begin{equation*}
H_{00}^{i}=T^{i}-\bar{T}^{i}-\frac{1}{n+1}\left(T_{y^{m}}^{m}-\bar{T}_{y^{m}}^{m}\right) y^{i} \tag{2.9}
\end{equation*}
$$

where $H_{00}^{i}=H_{j k}^{i} y^{j} y^{k}$, T^{i} and $T_{y^{m}}^{m}$ are given by the relations (2.6) and (2.8) respectively.

3. Projective Change between Randers Metric and Special (α, β)-metric

In this section, we find the projective relation between two (α, β)-metrics that is special (α, β)-metric $L=\alpha-\frac{\beta^{2}}{\alpha}+\beta$ and Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ on a same underlying manifold M of dimension $n \geq 3$. For (α, β)-metric $L=\alpha-\frac{\beta^{2}}{\alpha}+\beta$, one can prove by (2.3) that L is a regular Finsler metric if and only if 1 -form β satisfies the condition $\left\|\beta_{x}\right\|_{\alpha}<1$ for any $x \in M$. The geodesic coefficients are given by (2.4) with

$$
\begin{align*}
& \theta=\frac{1+3 s^{2}-4 s^{3}}{2\left(1+s-s^{2}\right)\left(1-2 b^{2}+3 s^{2}\right)}, \\
& Q=\frac{1-2 s}{1+s^{2}} \\
& \Psi=\frac{-1}{1-2 b^{2}+3 s^{2}} . \tag{3.1}
\end{align*}
$$

Substituting (3.1) in to (2.4), we get

$$
\begin{align*}
G^{i}=G_{\alpha}^{i} & +\frac{1}{\alpha^{2}-2 b^{2} \alpha^{2}+3 \beta^{2}}\left[\frac{-2(\alpha-2 \beta) \alpha^{2} s_{0}}{\alpha^{2}+\beta^{2}}+r_{00}\right] \\
& \times\left[-\alpha^{2} b^{i}+\frac{\left(\alpha^{3}+3 \alpha \beta^{2}-4 \beta^{3}\right) y^{i}}{2\left(\alpha^{2}+\alpha \beta-\beta^{2}\right)}\right]+\frac{\alpha^{2}(\alpha-2 \beta) s_{0}^{i}}{\alpha^{2}+\beta^{2}} . \tag{3.2}
\end{align*}
$$

For Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$, one can also prove by (2.3) that \bar{L} is a regular Finsler metric if and only if $\left\|\beta_{x}\right\|_{\alpha}<1$ for any $x \in M$. The geodesic coefficients are given by (2.4) with

$$
\begin{equation*}
\bar{\theta}=\frac{1}{2(1+s)}, \quad \bar{Q}=1, \quad \bar{\Psi}=0 \tag{3.3}
\end{equation*}
$$

First, we prove the following lemma:
Lemma 3.1. Let $L=\alpha-\frac{\beta^{2}}{\alpha}+\beta$ and $\bar{L}=\bar{\alpha}+\bar{\beta}$ be two (α, β)-metrics on a manifold M with dimension $n \geq 3$. Then they have the same Douglas tensor if and only if both the metrics L and \bar{L} are Douglas metrics.

Proof. First, we prove the sufficient condition. Let L and \bar{L} be Douglas metrics and corresponding Douglas tensors be $D_{j k l}^{i}$ and $\bar{D}_{j k l}^{i}$. Then by the definition of Douglas metric, we have $D_{j k l}^{i}=0$ and $\bar{D}_{j k l}^{i}=0$, that is, both L and \bar{L} have same Douglas tensor. Next, we prove the necessary condition. If L and \bar{L} have the same Douglas tensor, then (2.9) holds. Substituting (3.1) and (3.3) in to (2.9), we obtain

$$
\begin{equation*}
H_{00}^{i}=\frac{A^{i} \alpha^{9}+B^{i} \alpha^{8}+C^{i} \alpha^{7}+D^{i} \alpha^{6}+E^{i} \alpha^{5}+F^{i} \alpha^{4}+G^{i} \alpha^{3}+H^{i} \alpha^{2}+J^{i}}{K \alpha^{8}+L \alpha^{6}+M \alpha^{4}+N \alpha^{2}+P}-\bar{\alpha} \bar{s}_{0}^{i}, \tag{3.4}
\end{equation*}
$$

where

$$
A^{i}=\left(1-2 b^{2}\right)\left[\left(1-2 b^{2}\right) s_{0}^{i}+2 b^{i} s_{0}\right]
$$

$$
\begin{align*}
B^{i}= & -\left(1-2 b^{2}\right)\left\{b^{i} r_{00}+2 \beta\left(1-2 b^{2}\right) s_{0}^{i}+4 b^{i} \beta s_{0}+2 \lambda y^{i}\left[\left(1-4 b^{2}\right) s_{0}-r_{0}\right]\right\}, \\
C^{i}= & \beta\left\{\beta\left(1-2 b^{2}\right)\left(7-2 b^{2}\right) s_{0}^{i}-4\left[b^{i} \beta\left(b^{2}-2\right)-3 \lambda y^{i} b^{2}\right] s_{0}\right\}, \\
D^{i}= & \beta\left\{\beta\left(1-2 b^{2}\right)\left[2 \beta\left(2 b^{2}-7\right) s_{0}^{i}+2 \lambda y^{i}\left[\left(2 b^{2}+5\right) s_{0}+2 r_{0}\right]-b^{i} r_{00}\right]\right. \\
& \left.+2 \beta\left(b^{2}-2\right)\left[4\left(b^{i} \beta+b^{2} \lambda y^{i}\right) s_{0}+b^{i} r_{00}\right]-6 \lambda y^{i}\left[b^{2} r_{00}-\beta r_{0}\right]\right\}, \\
E^{i}= & 3 \beta^{3}\left\{\beta\left[\left(5-4 b^{2}\right) s_{0}^{i}+2 b^{i} s_{0}\right]-4 \lambda y^{i}\left(1-b^{2}\right) s_{0}\right\}, \\
F^{i}= & \beta^{3}\left\{6 \beta^{2}\left[\left(4 b^{2}-5\right) s_{0}^{i}-2 b^{i} s_{0}\right]+b^{i} \beta\left(2 b^{2}-7\right) r_{00}\right. \\
& \left.-2 \lambda y^{i}\left[\beta\left(14 b^{2}-19\right) s_{0}+3\left(2 b^{2}-1\right) r_{00}-\beta\left(7-2 b^{2}\right) r_{0}\right]\right\}, \\
G^{i}= & 3 \beta^{5}\left(3 \beta s_{0}^{i}-4 \lambda y^{i} s_{0}\right), \\
H^{i}= & -3 \beta^{5}\left\{\beta\left[6 \beta s_{0}^{i}+b^{i} r_{00}\right]+2 \lambda y^{i}\left[\left(b^{2}-2\right) r_{00}-\beta\left(5 s_{0}+r_{0}\right)\right]\right\}, \\
J^{i}= & 6 \lambda y^{i} \beta^{7} r_{00}, \\
\lambda= & \frac{1}{n+1} \tag{3.5}
\end{align*}
$$

and

$$
\begin{align*}
K & =\left(1-2 b^{2}\right)^{2}, \\
L & =4 \beta^{2}\left(1-2 b^{2}\right)\left(2-b^{2}\right), \\
M & =\beta^{4}\left[\left(1-2 b^{2}\right)^{2}+3\left(7-8 b^{2}\right)\right], \\
N & =-12 \beta^{6}\left(b^{2}-2\right), \\
P & =9 \beta^{8} . \tag{3.6}
\end{align*}
$$

Then (3.4) is equivalent to

$$
\begin{align*}
A^{i} \alpha^{9} & +B^{i} \alpha^{8}+C^{i} \alpha^{7}+D^{i} \alpha^{6}+E^{i} \alpha^{5}+F^{i} \alpha^{4}+G^{i} \alpha^{3}+H^{i} \alpha^{2}+J^{i} \\
& =\left(K \alpha^{8}+L \alpha^{6}+M \alpha^{4}+N \alpha^{2}+P\right)\left(\bar{\alpha} \bar{s}_{0}^{i}+H_{00}^{i}\right) . \tag{3.7}
\end{align*}
$$

Replacing y^{i} in (3.7) by $-y^{i}$ yields

$$
\begin{align*}
& -A^{i} \alpha^{9}+B^{i} \alpha^{8}-C^{i} \alpha^{7}+D^{i} \alpha^{6}-E^{i} \alpha^{5}+F^{i} \alpha^{4}-G^{i} \alpha^{3}+H^{i} \alpha^{2}+J^{i} \\
& \quad=\left(K \alpha^{8}+L \alpha^{6}+M \alpha^{4}+N \alpha^{2}+P\right)\left(H_{00}^{i}-\bar{\alpha} \bar{s}_{0}^{i}\right) \tag{3.8}
\end{align*}
$$

Subtracting (3.8) from (3.7), we obtain

$$
\begin{equation*}
A^{i} \alpha^{9}+C^{i} \alpha^{7}+E^{i} \alpha^{5}+G^{i} \alpha^{3}=\left(K \alpha^{8}+L \alpha^{6}+M \alpha^{4}+N \alpha^{2}+P\right)\left(\bar{\alpha} \bar{s}_{0}^{i}\right) \tag{3.9}
\end{equation*}
$$

From (3.9), $P \bar{\alpha} \bar{s}_{0}^{i}$ has the factor α^{2}, that is, the term $P \bar{\alpha} \bar{s}_{0}^{i}=9 \beta^{8} \bar{\alpha} \bar{s}_{0}^{i}$ has the factor α^{2}. Now, we can study two cases for Riemannian metric.
Case (i): If $\bar{\alpha} \neq \mu(x) \alpha$, then $P \bar{s}_{0}^{i}=9 \beta^{8} \bar{s}_{0}^{i}$ has the factor α^{2}.
Note that β^{2} has no factor α^{2}. Then the only possibility is that $\beta \bar{s}_{0}^{i}$ has the factor α^{2}.

Then for each i there exists a scalar function $\tau^{i}=\tau(x)$ such that $\beta \bar{s}_{0}^{i}=\tau^{i} \alpha^{2}$ which is equivalent to $b_{j} \bar{s}_{k}^{i}+b_{k} \bar{s}_{j}^{i}=2 \tau^{i} \alpha_{j k}$.

When $n \geq 3$ and we assume that $\tau^{i} \neq 0$, then

$$
\begin{align*}
2 & \geq \operatorname{rank}\left(b_{j} \bar{s}_{k}^{i}\right)+\operatorname{rank}\left(b_{k} \bar{s}_{j}^{i}\right) \\
& \geq \operatorname{rank}\left(b_{j} \bar{s}_{k}^{i}+b_{k} \bar{s}_{j}^{i}\right) \\
& =\operatorname{rank}\left(2 \tau^{i} \alpha_{j k}\right) \geq 3, \tag{3.10}
\end{align*}
$$

which is impossible unless $\tau^{i}=0$. Then $\beta \bar{s}_{0}^{i}=0$. Since $\beta \neq 0$, we have $\bar{s}_{0}^{i}=0$, which says that $\bar{\beta}$ is closed.

Case (ii): If $\bar{\alpha}=\mu(x) \alpha$, then (3.9) reduces to

$$
A^{i} \alpha^{8}+C^{i} \alpha^{6}+E^{i} \alpha^{4}+G^{i} \alpha^{2}=\mu(x) \bar{s}_{0}^{i}\left[K \alpha^{8}+L \alpha^{6}+M \alpha^{4}+N \alpha^{2}+P\right]
$$

which is written as

$$
\begin{equation*}
\mu(x) P \bar{s}_{0}^{i}=\left[A^{i} \alpha^{6}+C^{i} \alpha^{4}+E^{i} \alpha^{2}+G^{i}-\mu(x) \bar{s}_{0}^{i}\left(K \alpha^{6}+L \alpha^{4}+M \alpha^{2}+N\right)\right] \alpha^{2} . \tag{3.11}
\end{equation*}
$$

From (3.11), we can see that $\mu(x) P \bar{s}_{0}^{i}$ has the factor α^{2}. i.e., $\mu(x) P \bar{s}_{0}^{i}=9 \mu(x) \bar{s}_{0}^{i} \beta^{8}$ has the factor α^{2}. Note that $\mu(x) \neq 0$ for all $x \in M$ and β^{2} has no factor α^{2}. The only possibility is that $\beta \bar{s}_{0}^{i}$ has the factor α^{2}. As the similar reason in case (i), we have $\bar{s}_{0}^{i}=0$, when $n \geq 3$, which says that $\bar{\beta}$ is closed.
M. Hashiguchi [5] proved that Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ is a Douglas metric if and only if $\bar{\beta}$ is closed. Thus $\bar{L}=\bar{\alpha}+\bar{\beta}$ is a Douglas metric. Since L is projectively related to \bar{L}, then both L and \bar{L} are Douglas metrics.

Now, we prove the following main theorem:
Theorem 3.1. The Finsler metric $L=\alpha-\frac{\beta^{2}}{\alpha}+\beta$ is projectively related to $\bar{L}=\bar{\alpha}+\bar{\beta}$ if and only if the following conditions are satisfied

$$
\begin{align*}
& G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+\theta y^{i}-\tau \alpha^{2} b^{i}, \\
& b_{i \mid j}=\tau\left[\left(-1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}\right], \\
& d \bar{\beta}=0 \tag{3.12}
\end{align*}
$$

where $b^{i}=a^{i j} b_{j}, b=\|\beta\|_{\alpha}, b_{i \mid j}$ denote the coefficients of the covariant derivatives of β with respect to $\alpha, \tau=\tau(x)$ is a scalar function and $\theta=\theta_{i} y^{i}$ is a 1 -form on a manifold M with dimension $n \geq 3$.

Proof. First, we prove the necessary condition. Since Douglas tensor is an invariant under projective changes between two Finsler metrics, if L is projectively related to \bar{L}, then they have the same Douglas tensor. According to Lemma (3.1), we obtain that both L and \bar{L} are Douglas metrics.

We know that Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ is a Douglas metric if and only if $\bar{\beta}$ is closed, that is

$$
\begin{equation*}
d \bar{\beta}=0 \tag{3.13}
\end{equation*}
$$

and $L=\alpha-\frac{\beta^{2}}{\alpha}+\beta$ is a Douglas metric if and only if

$$
\begin{equation*}
b_{i \mid j}=\tau\left[\left(-1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}\right] \tag{3.14}
\end{equation*}
$$

for some scalar function $\tau=\tau(x)$ [2], where $b_{i \mid j}$ denote the coefficients of the covariant derivatives of $\beta=b_{i} y^{i}$ with respect to α. In this case, β is closed. Since β is closed, $s_{i j}=0 \Rightarrow b_{i \mid j}=b_{j \mid i}$. Thus $s_{0}^{i}=0$ and $s_{0}=0$.
By using (3.14), we have $r_{00}=\tau\left[\left(-1+2 b^{2}\right) \alpha^{2}-3 \beta^{2}\right]$. Substituting all these in (3.2), we obtain

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}-\tau\left[\frac{\alpha^{3}+3 \alpha \beta^{2}-4 \beta^{3}}{2\left(\alpha^{2}+\alpha \beta-\beta^{2}\right)}\right] y^{i}+\tau \alpha^{2} b^{i} \tag{3.15}
\end{equation*}
$$

Since L is projective to $\bar{L}=\bar{\alpha}+\bar{\beta}$, this is a Randers change between L and $\bar{\alpha}$. Noticing that $\bar{\beta}$ is closed, then L is projectively related to $\bar{\alpha}$. Thus there is a scalar function $P=P(y)$ on $T M \backslash\{0\}$ such that

$$
\begin{equation*}
G^{i}=G_{\bar{\alpha}}^{i}+P y^{i} . \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16), we have

$$
\begin{equation*}
\left[P+\tau\left(\frac{\alpha^{3}+3 \alpha \beta^{2}-4 \beta^{3}}{2\left(\alpha^{2}+\alpha \beta-\beta^{2}\right)}\right)\right] y^{i}=G_{\alpha}^{i}-G_{\bar{\alpha}}^{i}+\tau \alpha^{2} b^{i} . \tag{3.17}
\end{equation*}
$$

Note that the RHS of the above equation is a quadratic form. Then there must be a one form $\theta=\theta_{i} y^{i}$ on M, such that

$$
P+\tau\left(\frac{\alpha^{3}+3 \alpha \beta^{2}-4 \beta^{3}}{2\left(\alpha^{2}+\alpha \beta-\beta^{2}\right)}\right)=\theta
$$

Thus (3.17) becomes

$$
\begin{equation*}
G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+\theta y^{i}-\tau \alpha^{2} b^{i} \tag{3.18}
\end{equation*}
$$

From (3.13) and (3.14) together with (3.18) complete the proof of the necessity.
For the sufficiency, noticing that $\bar{\beta}$ is closed, it suffices to prove that L is projectively related to $\bar{\alpha}$. Substituting (3.14) in to (3.2) yields (3.15).

From (3.15) and (3.18), we have

$$
G^{i}=G_{\bar{\alpha}}^{i}+\left[\theta-\tau\left(\frac{\alpha^{3}+3 \alpha \beta^{2}-4 \beta^{3}}{2\left(\alpha^{2}+\alpha \beta-\beta^{2}\right)}\right)\right] y^{i},
$$

i.e., L is projectively related to $\bar{\alpha}$.

From the above theorem, immediately we get the following corollaries
Corollary 3.1. The Finsler metric $L=\alpha-\frac{\beta^{2}}{\alpha}+\beta$ is projectively related to $\bar{L}=\bar{\alpha}+\bar{\beta}$ if and only if they are Douglas metrics and the spray coefficients of α and $\bar{\alpha}$ have the following relation

$$
G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+\theta y^{i}-\tau \alpha^{2} b^{i},
$$

where $b^{i}=a^{i j} b_{j}, \tau=\tau(x)$ is a scalar function and $\theta=\theta_{i} y^{i}$ is a one form on a manifold M with dimension $n \geq 3$.

Further, we assume that the Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ is locally Minkowskian, where $\bar{\alpha}$ is an Euclidean metric and $\bar{\beta}=\bar{b}_{i} y^{i}$ is a one form with $\bar{b}_{i}=$ constants. Then (3.12) can be written as

$$
\begin{align*}
& G_{\alpha}^{i}=\theta y^{i}-\tau \alpha^{2} b^{i}, \\
& b_{i \mid j}=\tau\left[\left(-1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}\right] . \tag{3.19}
\end{align*}
$$

Thus, we state
Corollary 3.2. The Finsler metric $L=\alpha-\frac{\beta^{2}}{\alpha}+\beta$ is projectively related to \bar{L} if and only if L is projectively flat, in other words, L is projectively flat if and only if (3.19) holds.

4. Special Curvature Properties of Two (α, β)-metrics

We know that, the Berwald curvature tensor of a Finsler metric L is defined by [12]

$$
B=B_{j k l}^{i} d x^{j} \otimes \partial_{i} \otimes d x^{k} \otimes d x^{l}
$$

where $B_{j k l}^{i}=\left[G^{i}\right]_{y^{j} y^{k} y^{l}}$ and G^{i} are the spray coefficients of L. The mean Berwald curvature tensor is defined by

$$
E=E_{i j} d x^{i} \otimes d x^{j}
$$

where $E_{i j}=\frac{1}{2} B_{m i j}^{m}$. A Finsler metric is said to be of isotropic mean Berwald curvature if

$$
E_{i j}=\frac{n+1}{2} c(x) L_{y^{i} y^{j}},
$$

for some scalar function $c(x)$ on M.
In this section, we assume that (α, β)-metric $L=\alpha-\frac{\beta^{2}}{\alpha}+\beta$ has some special curvature properties. Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ is projectively related to L.

First, we assume that L has isotropic S-curvature, i.e., $S=(n+1) c(x) L$ for some scalar function $c(x)$ on M. The (α, β)-metric, $L=\alpha+\epsilon \beta+k\left(\frac{\beta^{2}}{\alpha}\right)$ of isotropic curvature has been characterized in [4], where ϵ and k are non zero constants. We use the following theorem proved by N. Cui [4].

Theorem 4.1. For the special form of (α, β)-metric, $L=\alpha+\epsilon \beta+k\left(\frac{\beta^{2}}{\alpha}\right)$, where ϵ, k are non zero constants, the following are equivalent:
(a) L has isotropic S-curvature, i.e., $S=(n+1) c(x) L$ for some scalar function $c(x)$ on M.
(b) L has isotropic mean Berwald curvature.
(c) β is a Killing one form of constant length with respect to α. This is equivalent to $r_{00}=s_{0}=0$.
(d) L has vanished S-curvature, i.e., $S=0$.
(e) L is a weak Berwald metric, i.e., $E=0$.

The above theorem is valid for $L=\alpha-\frac{\beta^{2}}{\alpha}+\beta$ when we take $\epsilon=1$ and $k=-1$. Then we have
Theorem 4.2. Let $L=\alpha-\frac{\beta^{2}}{\alpha}+\beta$ has isotropic S-curvature or isotropic mean Berwald curvature. Then the Finsler metric L is projectively related to $\bar{L}=\bar{\alpha}+\bar{\beta}$ if and only if the following conditions hold:
(a) α is projectively related to $\bar{\alpha}$,
(b) β is parallel with respect to α, i.e., $b_{i \mid j}=0$,
(c) $\bar{\beta}$ is closed, i.e., $d \bar{\beta}=0$,
where $b_{i \mid j}$ denote the coefficients of the covariant derivatives of β with respect to α.
Proof. The sufficiency is obvious from Theorem 3.1. For the necessity, from Theorem 3.1 we have that if L is projectively related to \bar{L}, then

$$
b_{i \mid j}=\tau\left[\left(-1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}\right]
$$

for some scalar function $\tau=\tau(x)$. Contracting above equation with y^{i} and y^{j} yields

$$
\begin{equation*}
r_{00}=\tau\left[\left(-1+2 b^{2}\right) \alpha^{2}-3 \beta^{2}\right] . \tag{4.1}
\end{equation*}
$$

By the Theorem 4.1, if L has isotropic S-curvature or equivalently isotropic mean Berwald curvature, then $r_{00}=0$. If $\tau \neq 0$, then (4.1) gives

$$
\begin{equation*}
\left(-1+2 b^{2}\right) \alpha^{2}-3 \beta^{2}=0 \tag{4.2}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\left(-1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}=0 \tag{4.3}
\end{equation*}
$$

Contracting the above equation with $a^{i j}$ yields $-n+(2 n-3) b^{2}=0$, which is impossible.

Thus $\tau=0$. Substituting in to Theorem 3.1, we complete the proof.

References

[1] P.L. Antonelli, R.S. Ingarden and M. Matsumoto, The theory of sprays and Finsler spaces with applications in Physics and Biology, Kluwer academic publishers, London, 1985.
[2] S. Bacso, X. Cheng and Z. Shen, Curvature properties of (α, β)-metric, 2006.
[3] S. Bacso and M. Matsumoto, Projective change between Finsler spaces with (α, β)metric, Tensor N.S. 55 (1994), 252-257.
[4] N. Cui , On the S-curvature of some (α, β)-metrics, Acta Math. Sci. 26A(7) (2006), 1047-1056.
[5] M. Hashiguchi and Y. Ichijyo, Randers spaces with rectilinear geodesics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chen.) 13 (1980), 33-44.
[6] H.-S. Park, I.-Y. Lee, H.-Y. Park and B.-D. Kim, Projectively flat Finsler spaces with an approximate Matsumoto metric, Comm. Korean Math. Soc. 18(3) (2003), 501-513.
[7] Z. Lin, Some results on a class of (α, β)-metrics with constant flag curvature, Diff. Geom. Appl. (2009), doi:10.1016/j.difgeo.2008.10.021, in press.
[8] M. Matsumoto, Foundations of Finsler Geometry and special Finsler Spaces, Kaiseisha press, Otsu, Saikawa, 1986.
[9] M. Matsumoto, Finsler spaces with (α, β)-metric of Douglas type, Tensor N.S. 60 (1998).
[10] M. Matsumoto and X. Wei, Projective changes of Finsler spaces of constant curvature, Publ. Math. Debrecen. 44 (1994), 175-181.
[11] S.K. Narasimhamurthy and G.N. Latha Kumari, On a hypersurface of a special Finsler space with a metric $L=\alpha+\beta+\frac{\beta^{2}}{\alpha}$, ADJM 9(1) (2010), 36-44.
[12] Ningwei Cui and Yi-Bing Shen, Projective change between two classes of (α, β)metrics, Diff. Geom. and its Applications 27 (2009), 566-573.
[13] H.S. Park and Y. Lee, Projective changes between a Finsler space with (α, β)-metric and the associated Riemannian metric, Canad. J. Math. 60 (2008), 443-456.
[14] H.S. Park and Il-Yong Lee, The Randers changes of Finsler spaces with (α, β)-metrics of Douglas type, J. Korean Math. Soc. 38(3) (2001), 503-521.
[15] H.S. Park and Il-Yong Lee, On projectively flat Finsler spaces with (α, β)-metric, Comm. Korean Math. Soc. 14(2) (1999), 373-383.
[16] Pradeep Kumar, S.K. Narasimhamurthy, H.G. Nagaraja and S.T. Aveesh, On a special hypersurface of a Finsler space with (α, β)-metric, Tbilisi Mathematical Journal 2 (2009), 51-60.
[17] B.N. Prasad, B.N. Gupta and D.D. Singh, Conformal transformation in Finsler spaces with (α, β)-metric, Indian J. Pure and Appl. Math. 18(4) (1961), 290-301.
[18] A. Rapscak, Uber die bahntreuen Abbildungen metrisher Raume, Publ. Math. Debrecen. 8 (1961), 285-290.
[19] H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin, 1959.
[20] Z. Shen and G. Civi Yildirim, On a class of projectively flat metrics with constant flag curvature, Canad. J. Math. 60 (2008), 443-456.
[21] Z. Shen, On Landsberg (α, β)-metrics, 2006.
[22] C. Shibata, On Finsler spaces with an (α, β)-metric, J. Hokkaido Univ. of Education, IIA 35 (1984), 1-6.
S.K. Narasimhamurthy, Department of Mathematics, Kuvempu University, Shankaraghatta 577451, Shivamogga, Karnataka, India.
E-mail: nmurthysk@gmail.com
D.M. Vasantha, Department of Mathematics, Kuvempu University, Shankaraghatta 577451, Shivamogga, Karnataka, India.

Received March 20, 2011
Accepted October 2011

[^0]: 2010 Mathematics Subject Classification. 53B40, 53C60.
 Key words and phrases. Projective change; Randers metric; Douglas metric; Projective invariant; Locally Minkowski space.

