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Projective Change between Randers Metric
and Special (α,β)-metric

S.K. Narasimhamurthy and D.M. Vasantha

Abstract. In the present paper, we find the conditions to characterize projective

change between two (α,β)-metrics, such as special (α,β)-metric, L = α− β2

α
+β

and Randers metric L̄ = ᾱ+ β̄ on a manifold with dim n ≥ 3, where α and ᾱ are
two Riemannian metrics, β and β̄ are two non-zero 1-forms. Further, we study
the special curvature properties of two classes of (α,β)-metrics.

1. Introduction

The projective change between two Finsler spaces have been studied by many
authors ([3], [12], [10], [13], [15] [20]). An interesting result concerned with
the theory of projective change was given by Rapscak’s paper [18]. He proved
the necessary and sufficient condition for projective change. In 1994, S. Bacso
and M. Matsumoto [3] studied the projective change between Finsler spaces with
(α,β)-metric. In 2008, H.S. Park and Y. Lee [13] studied on projective changes
between a Finsler space with (α,β)-metric and the associated Riemannian metric.
The authors Z. Shen and Civi Yildirim [20] studied on a class of projectively flat
metrics with constant flag curvature in 2008. In 2009, Ningwei Cui and Yi-Bing
Shen [12] studied projective change between two classes of (α,β)-metrics. The
author N. Cui (2006) studied S-curvature of some (α,β)-metrics [4]. Some results
on a class of (α,β)-metrics with constant flag curvature have been studied recently
by Z. Lin (2009) [7].

The first part of the present paper is devoted to the study of projective change
between two classes of Finsler spaces with (α,β)-metric (Theorem 3.1). The
second part is devoted to investigate the special curvature properties of these
Finsler metrics under projective change (Theorem 4.2).
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2. Preliminaries

The terminology and notations are referred to ([8], [19], [1]). Let F n = (M , L)
be a Finsler space on a differential manifold M endowed with a fundamental
function L(x , y). We use the following notations:

(a) gi j =
1
2
∂̇i ∂̇ j L

2, ∂̇i =
∂

∂ y i ,

(b) Ci jk =
1
2
∂̇k gi j ,

(c) hi j = gi j − li l j ,

(d) γi
jk =

1
2

g ir(∂ j grk + ∂k gr j − ∂r g jk),

(e) G i = 1
2
γi

jk y j yk, G i
j = ∂̇ jG

i , G i
jk = ∂̇kG i

j , G i
jkl = ∂̇l G

i
jk.

The concept of (α,β)-metric L(α,β) was introduced in 1972 by M. Matsumoto
and studied by many authors like ([11], [16], [6], [9], [22], [17]). The Finsler
space F n = (M , L)) is said to have an (α,β)-metric if L is a positively homogeneous
function of degree one in two variables α2 = ai j(x)y i y j and β = bi(x)y i . A change
L → L̄ of a Finsler metric on a same underlying manifold M is called projective
change if any geodesic in (M , L) remains to be a geodesic in (M , L̄) and viceversa.
We say that a Finsler metric is projectively related to another metric if they have the
same geodesics as point sets. In Riemannian geometry, two Riemannian metrics α
and ᾱ are projectively related if and only if their spray coefficients have the relation
[12]

G i
α = G i

ᾱ +λx k yk y i , (2.1)

where λ = λ(x) is a scalar function on the based manifold, and (x i , y j) denotes
the local coordinates in the tangent bundle T M .

Two Finsler metrics F and F̄ are projectively related if and only if their spray
coefficients have the relation [12]

G i = Ḡ i + P(y)y i , (2.2)

where P(y) is a scalar function on T M \ {0} and homogeneous of degree one in
y . A Finsler metric is called a projectively flat metric if it is projectively related to
a locally Minkowskian metric.

For a given Finsler metric L = L(x , y), the geodesics of L satisfy the following
ODEs:

d2 x i

d t2 + 2G i
�

x ,
d x

d t

�
= 0,

where G i = G i(x , y) are called the geodesic coefficients, which are given by

G i =
1

4
g il�[L2]xm y l ym − [L2]x l

	
.
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Let φ = φ(s), |s|< b0, be a positive C∞ function satisfying the following

φ(s)− sφ′(s) + (b2 − s2)φ′′(s)> 0, (|s| ≤ b < b0). (2.3)

If α =
p

ai j y i y j is a Riemannian metric and β = bi y i is 1-form satisfying
‖βx‖α < b0 for all x ∈ M , then L = φ(s), s = β/α, is called an (regular) (α,β)-
metric. In this case, the fundamental form of the metric tensor induced by L is
positive definite.

Let ∇β = bi| jd x i ⊗ d x j be covariant derivative of β with respect to α.
Denote

ri j =
1

2
(bi| j + b j|i), si j =

1

2
(bi| j − b j|i).

β is closed if and only if si j = 0 [21]. Let s j = bisi j , si
j = ailsl j , s0 = si y i , si

0 = si
j y j

and r00 = ri j y i y j .
The relation between the geodesic coefficients G i of L and geodesic coefficients

G i
α of α is given by

G i = G i
α +αQsi

0 + {−2Qαs0 + r00}{Ψbi +Θα−1 y i}, (2.4)

where

Θ=
φφ′ − s(φφ′′ +φ′φ′)

2φ((φ − sφ′) + (b2 − s2)φ′′)
,

Q =
φ′

φ − sφ′
,

Ψ=
1

2

φ′′

(φ − sφ′) + (b2 − s2)φ′′
.

Definition 2.1 ([12]). Let

Di
jkl =

∂ 3

∂ y j∂ yk∂ y l

�
G i − 1

n+ 1

∂ Gm

∂ ym y i
�

, (2.5)

where G i are the spray coefficients of L. The tensor D = Di
jkl∂i⊗d x j⊗d x k⊗d x l is

called the Douglas tensor. A Finsler metric is called Douglas metric if the Douglas
tensor vanishes.

We know that the Douglas tensor is a projective invariant [14]. Note that the
spray coefficients of a Riemannian metric are quadratic forms and one can see
that the Douglas tensor vanishes form (2.5). This shows that Douglas tensor is a
non-Riemannian quantity.

In the following, we use quantities with a bar to denote the corresponding
quantities of the metric L̄. First, we compute the Douglas tensor of a general (α,β)-
metric.
Let

bG i = G i
α +αQsi

0 +Ψ{−2Qαs0 + r00}bi .
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Then (2.4) becomes

G i = bG i +Θ{−2Qαs0 + r00}α−1 y i .

Clearly, G i and bG i are projective equivalent according to (2.2), they have the same
Douglas tensor.
Let

T i = αQsi
0 +Ψ{−2Qαs0 + r00}bi . (2.6)

Then bG i = G i
α + T i , thus

Di
jkl = bDi

jkl

=
∂ 3

∂ y j∂ yk∂ y l

�
G i
α −

1

n+ 1

∂ Gm
α

∂ ym y i + T i − 1

n+ 1

∂ T m

∂ ym y i
�

=
∂ 3

∂ y j∂ yk∂ y l

�
T i − 1

n+ 1

∂ T m

∂ ym y i
�

. (2.7)

To simplify (2.7), we use the following identities

αyk = α−1 yk, syk = α−2(bkα− s yk),

where yi = ail y l , αyk = ∂ α

∂ yk . Then

[αQsm
0 ]ym = α−1 ymQsm

0 +α
−2Q′[bmα

2 − β ym]s
m
0

=Q′s0

and

[Ψ(−2Qαs0 + r00)b
m]ym =Ψ′α−1(b2 − s2)[r00 − 2Qαs0]

+ 2Ψ[r0 −Q′(b2 − s2)s0 −Qss0],

where r j = bi ri j and r0 = ri y i . Thus from (2.6), we obtain

T m
ym =Q′s0 +Ψ

′α−1(b2 − s2)[r00 − 2Qαs0]

+ 2Ψ[r0 −Q′(b2 − s2)s0 −Qss0]. (2.8)

Now, we assume that the (α,β)-metrics L and L̄ have the same Douglas tensor,
that is, Di

jkl = D̄i
jkl . Thus from (2.5) and (2.7), we get

∂ 3

∂ y j∂ yk∂ y l

�
T i − T̄ i − 1

n+ 1
(T m

ym − T̄ m
ym)y i

�
= 0.

Then there exists a class of scalar functions H i
jk = H i

jk(x), such that

H i
00 = T i − T̄ i − 1

n+ 1
(T m

ym − T̄ m
ym)y i , (2.9)

where H i
00 = H i

jk y j yk, T i and T m
ym are given by the relations (2.6) and (2.8)

respectively.
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3. Projective Change between Randers Metric and Special (α,β)-metric

In this section, we find the projective relation between two (α,β)-metrics that
is special (α,β)-metric L = α− β2

α
+ β and Randers metric L̄ = ᾱ+ β̄ on a same

underlying manifold M of dimension n≥ 3. For (α,β)-metric L = α− β2

α
+β , one

can prove by (2.3) that L is a regular Finsler metric if and only if 1-form β satisfies
the condition ‖βx‖α < 1 for any x ∈ M . The geodesic coefficients are given by
(2.4) with

θ =
1+ 3s2 − 4s3

2(1+ s− s2)(1− 2b2 + 3s2)
,

Q =
1− 2s

1+ s2 ,

Ψ=
−1

1− 2b2 + 3s2 . (3.1)

Substituting (3.1) in to (2.4), we get

G i = G i
α +

1

α2 − 2b2α2 + 3β2

�−2(α− 2β)α2s0

α2 + β2 + r00

�

×
�
−α2 bi +

(α3 + 3αβ2 − 4β3)y i

2(α2 +αβ − β2)

�
+
α2(α− 2β)si

0

α2 + β2 . (3.2)

For Randers metric L̄ = ᾱ + β̄ , one can also prove by (2.3) that L̄ is a regular
Finsler metric if and only if ‖βx‖α < 1 for any x ∈ M . The geodesic coefficients are
given by (2.4) with

θ̄ =
1

2(1+ s)
, Q̄ = 1, Ψ̄ = 0. (3.3)

First, we prove the following lemma:

Lemma 3.1. Let L = α− β2

α
+β and L̄ = ᾱ+ β̄ be two (α,β)-metrics on a manifold

M with dimension n≥ 3. Then they have the same Douglas tensor if and only if both
the metrics L and L̄ are Douglas metrics.

Proof. First, we prove the sufficient condition. Let L and L̄ be Douglas metrics and
corresponding Douglas tensors be Di

jkl and D̄i
jkl . Then by the definition of Douglas

metric, we have Di
jkl = 0 and D̄i

jkl = 0, that is, both L and L̄ have same Douglas
tensor. Next, we prove the necessary condition. If L and L̄ have the same Douglas
tensor, then (2.9) holds. Substituting (3.1) and (3.3) in to (2.9), we obtain

H i
00 =

Aiα9 + Biα8 + C iα7 + Diα6 + E iα5 + F iα4 + G iα3 +H iα2 + J i

Kα8 + Lα6 +Mα4 + Nα2 + P
− ᾱs̄i

0,

(3.4)

where

Ai = (1− 2b2)[(1− 2b2)si
0 + 2bis0],
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Bi =−(1− 2b2){bi r00 + 2β(1− 2b2)si
0 + 4biβs0 + 2λy i[(1− 4b2)s0 − r0]},

C i = β{β(1− 2b2)(7− 2b2)si
0 − 4[biβ(b2 − 2)− 3λy i b2]s0},

Di = β{β(1− 2b2)[2β(2b2 − 7)si
0 + 2λy i[(2b2 + 5)s0 + 2r0]− bi r00]

+ 2β(b2 − 2)[4(biβ + b2λy i)s0 + bi r00]− 6λy i[b2r00 − β r0]},
E i = 3β3{β[(5− 4b2)si

0 + 2bis0]− 4λy i(1− b2)s0},
F i = β3{6β2[(4b2 − 5)si

0 − 2bis0] + biβ(2b2 − 7)r00

− 2λy i[β(14b2 − 19)s0 + 3(2b2 − 1)r00 − β(7− 2b2)r0]},
G i = 3β5(3βsi

0 − 4λy is0),

H i =−3β5{β[6βsi
0 + bi r00] + 2λy i[(b2 − 2)r00 − β(5s0 + r0)]},

J i = 6λy iβ7r00,

λ=
1

n+ 1
(3.5)

and

K = (1− 2b2)2,

L = 4β2(1− 2b2)(2− b2),

M = β4[(1− 2b2)2 + 3(7− 8b2)],

N =−12β6(b2 − 2),

P = 9β8. (3.6)

Then (3.4) is equivalent to

Aiα9 + Biα8 + C iα7 + Diα6 + E iα5 + F iα4 + G iα3 +H iα2 + J i

= (Kα8 + Lα6 +Mα4 + Nα2 + P)(ᾱs̄i
0 +H i

00). (3.7)

Replacing y i in (3.7) by −y i yields

− Aiα9 + Biα8 − C iα7 + Diα6 − E iα5 + F iα4 − G iα3 +H iα2 + J i

= (Kα8 + Lα6 +Mα4 + Nα2 + P)(H i
00 − ᾱs̄i

0). (3.8)

Subtracting (3.8) from (3.7), we obtain

Aiα9 + C iα7 + E iα5 + G iα3 = (Kα8 + Lα6 +Mα4 + Nα2 + P)(ᾱs̄i
0). (3.9)

From (3.9), Pᾱs̄i
0 has the factor α2, that is, the term Pᾱs̄i

0 = 9β8ᾱs̄i
0 has the factor

α2. Now, we can study two cases for Riemannian metric.

Case (i): If ᾱ 6= µ(x)α, then Ps̄i
0 = 9β8s̄i

0 has the factor α2.
Note that β2 has no factor α2. Then the only possibility is that β s̄i

0 has the factor
α2.

Then for each i there exists a scalar function τi = τ(x) such that β s̄i
0 = τ

iα2

which is equivalent to b j s̄
i
k + bk s̄i

j = 2τiα jk.
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When n≥ 3 and we assume that τi 6= 0, then

2≥ rank(b j s̄
i
k) + rank(bk s̄i

j)

≥ rank(b j s̄
i
k + bk s̄i

j)

= rank(2τiα jk)≥ 3, (3.10)

which is impossible unless τi = 0. Then β s̄i
0 = 0. Since β 6= 0, we have s̄i

0 = 0,
which says that β̄ is closed.

Case (ii): If ᾱ= µ(x)α, then (3.9) reduces to

Aiα8 + C iα6 + E iα4 + G iα2 = µ(x)s̄i
0[Kα

8 + Lα6 +Mα4 + Nα2 + P],

which is written as

µ(x)Ps̄i
0 = [A

iα6+ C iα4+ E iα2+G i −µ(x)s̄i
0(Kα

6+ Lα4+Mα2+N)]α2.

(3.11)

From (3.11), we can see that µ(x)Ps̄i
0 has the factor α2. i.e., µ(x)Ps̄i

0 = 9µ(x)s̄i
0β

8

has the factor α2. Note that µ(x) 6= 0 for all x ∈ M and β2 has no factor α2. The
only possibility is that β s̄i

0 has the factor α2. As the similar reason in case (i), we
have s̄i

0 = 0, when n≥ 3, which says that β̄ is closed.
M. Hashiguchi [5] proved that Randers metric L̄ = ᾱ+ β̄ is a Douglas metric if

and only if β̄ is closed. Thus L̄ = ᾱ+ β̄ is a Douglas metric. Since L is projectively
related to L̄, then both L and L̄ are Douglas metrics.

Now, we prove the following main theorem:

Theorem 3.1. The Finsler metric L = α− β2

α
+β is projectively related to L̄ = ᾱ+ β̄

if and only if the following conditions are satisfied

G i
α = G i

ᾱ + θ y i −τα2 bi ,

bi| j = τ[(−1+ 2b2)ai j − 3bi b j],

dβ̄ = 0, (3.12)

where bi = ai j b j , b = ‖β‖α, bi| j denote the coefficients of the covariant derivatives
of β with respect to α, τ = τ(x) is a scalar function and θ = θi y i is a 1-form on a
manifold M with dimension n≥ 3.

Proof. First, we prove the necessary condition. Since Douglas tensor is an invariant
under projective changes between two Finsler metrics, if L is projectively related to
L̄, then they have the same Douglas tensor. According to Lemma (3.1), we obtain
that both L and L̄ are Douglas metrics.

We know that Randers metric L̄ = ᾱ+ β̄ is a Douglas metric if and only if β̄ is
closed , that is

dβ̄ = 0 (3.13)
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and L = α− β2

α
+ β is a Douglas metric if and only if

bi| j = τ[(−1+ 2b2)ai j − 3bi b j], (3.14)

for some scalar function τ = τ(x) [2], where bi| j denote the coefficients of the
covariant derivatives of β = bi y i with respect to α. In this case, β is closed. Since
β is closed, si j = 0⇒ bi| j = b j|i . Thus si

0 = 0 and s0 = 0.
By using (3.14), we have r00 = τ[(−1+ 2b2)α2 − 3β2]. Substituting all these in
(3.2), we obtain

G i = G i
α −τ

�
α3 + 3αβ2 − 4β3

2(α2 +αβ − β2)

�
y i +τα2 bi . (3.15)

Since L is projective to L̄ = ᾱ + β̄ , this is a Randers change between L and ᾱ.
Noticing that β̄ is closed, then L is projectively related to ᾱ. Thus there is a scalar
function P = P(y) on T M \ {0} such that

G i = G i
ᾱ + P y i . (3.16)

From (3.15) and (3.16), we have
�

P +τ
�
α3 + 3αβ2 − 4β3

2(α2 +αβ − β2)

��
y i = G i

α − G i
ᾱ +τα

2 bi . (3.17)

Note that the RHS of the above equation is a quadratic form. Then there must be
a one form θ = θi y i on M , such that

P +τ
�
α3 + 3αβ2 − 4β3

2(α2 +αβ − β2)

�
= θ .

Thus (3.17) becomes

G i
α = G i

ᾱ + θ y i −τα2 bi . (3.18)

From (3.13) and (3.14) together with (3.18) complete the proof of the necessity.
For the sufficiency, noticing that β̄ is closed, it suffices to prove that L is

projectively related to ᾱ. Substituting (3.14) in to (3.2) yields (3.15).
From (3.15) and (3.18), we have

G i = G i
ᾱ +
�
θ −τ

�
α3 + 3αβ2 − 4β3

2(α2 +αβ − β2)

��
y i ,

i.e., L is projectively related to ᾱ.
From the above theorem, immediately we get the following corollaries

Corollary 3.1. The Finsler metric L = α− β2

α
+β is projectively related to L̄ = ᾱ+ β̄

if and only if they are Douglas metrics and the spray coefficients of α and ᾱ have the
following relation

G i
α = G i

ᾱ + θ y i −τα2 bi ,

where bi = ai j b j , τ = τ(x) is a scalar function and θ = θi y i is a one form on a
manifold M with dimension n≥ 3.
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Further, we assume that the Randers metric L̄ = ᾱ+ β̄ is locally Minkowskian,
where ᾱ is an Euclidean metric and β̄ = b̄i y i is a one form with b̄i=constants.
Then (3.12) can be written as

G i
α = θ y i −τα2 bi ,

bi| j = τ[(−1+ 2b2)ai j − 3bi b j]. (3.19)

Thus, we state

Corollary 3.2. The Finsler metric L = α− β2

α
+ β is projectively related to L̄ if and

only if L is projectively flat, in other words, L is projectively flat if and only if (3.19)
holds.

4. Special Curvature Properties of Two (α,β)-metrics

We know that, the Berwald curvature tensor of a Finsler metric L is defined
by [12]

B = Bi
jkl d x j ⊗ ∂i ⊗ d x k ⊗ d x l ,

where Bi
jkl = [G

i]y j yk y l and G i are the spray coefficients of L. The mean Berwald
curvature tensor is defined by

E = Ei jd x i ⊗ d x j ,

where Ei j =
1
2
Bm

mi j . A Finsler metric is said to be of isotropic mean Berwald curvature
if

Ei j =
n+ 1

2
c(x)L y i y j ,

for some scalar function c(x) on M .
In this section, we assume that (α,β)-metric L = α− β2

α
+ β has some special

curvature properties. Randers metric L̄ = ᾱ+ β̄ is projectively related to L.
First, we assume that L has isotropic S-curvature, i.e., S = (n + 1)c(x)L for

some scalar function c(x) on M . The (α,β)-metric, L = α+εβ+k(β
2

α
) of isotropic

curvature has been characterized in [4], where ε and k are non zero constants. We
use the following theorem proved by N. Cui [4].

Theorem 4.1. For the special form of (α,β)-metric, L = α+εβ + k(β
2

α
), where ε, k

are non zero constants, the following are equivalent:

(a) L has isotropic S-curvature, i.e., S = (n + 1)c(x)L for some scalar function
c(x) on M.

(b) L has isotropic mean Berwald curvature.
(c) β is a Killing one form of constant length with respect to α. This is equivalent

to r00 = s0 = 0.
(d) L has vanished S-curvature, i.e., S = 0.
(e) L is a weak Berwald metric, i.e., E = 0.
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The above theorem is valid for L = α− β2

α
+β when we take ε= 1 and k =−1.

Then we have

Theorem 4.2. Let L = α− β2

α
+β has isotropic S-curvature or isotropic mean Berwald

curvature. Then the Finsler metric L is projectively related to L̄ = ᾱ+ β̄ if and only if
the following conditions hold:

(a) α is projectively related to ᾱ,
(b) β is parallel with respect to α, i.e., bi| j = 0,
(c) β̄ is closed, i.e., dβ̄ = 0,

where bi| j denote the coefficients of the covariant derivatives of β with respect to α.

Proof. The sufficiency is obvious from Theorem 3.1. For the necessity, from
Theorem 3.1 we have that if L is projectively related to L̄, then

bi| j = τ[(−1+ 2b2)ai j − 3bi b j],

for some scalar function τ = τ(x). Contracting above equation with y i and y j

yields

r00 = τ[(−1+ 2b2)α2 − 3β2]. (4.1)

By the Theorem 4.1, if L has isotropic S-curvature or equivalently isotropic mean
Berwald curvature, then r00 = 0. If τ 6= 0, then (4.1) gives

(−1+ 2b2)α2 − 3β2 = 0, (4.2)

which is equivalent to

(−1+ 2b2)ai j − 3bi b j = 0. (4.3)

Contracting the above equation with ai j yields −n + (2n − 3)b2 = 0, which is
impossible.

Thus τ= 0. Substituting in to Theorem 3.1, we complete the proof. ¤
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