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1. Introduction

Let G = (V (G),E(G)) be a simple, connected and undirected graph, where V (G) is the vertex
set of G and E(G) is the edge set of G. For any two vertices u,v ∈V (G), the shortest distance
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between u and v is denoted by d(u,v), the longest distance between u and v is denoted by
D(u,v), the sum of the longest distance and shortest distance between u and v, called as circular
distance is denoted by d0(u,v).

The Wiener index of G is defined as W(G)= 1
2

∑
u,v∈V (G)

d(u,v) with the summation taken over

all pairs of distinct vertices of G. In the same manner the Detour index of G is defined as
D(G)= 1

2
∑

u,v∈V (G)
D(u,v), the Circular index of G is defined as C(G)= 1

2
∑

u,v∈V (G)
(D(u,v)+d(u,v))

and the Cut Circular index of G is defined as CC(G) = 1
2

∑
u,v∈V (G)

(D(u,v) − d(u,v)). Also,

C(G) = D(G)+W(G) and CC(G) = D(G)−W(G). For an edge e = (u,v) ∈ E(G), the number of
vertices of G whose distance to the vertex u is smaller than the distance to the vertex v in G is
denoted by nG

u (e) and the number of vertices of G whose distance to the vertex v is smaller than
the distance to the vertex u in G is denoted by nG

v (e), the vertices with equidistance from the
ends of the edge uv = e are not counted. The vertex PI index of G, denoted by PI(G), is defined
as PI(G)= ∑

e=uv∈E(G)
[nG

u (e)+nG
v (e)]. If G is a bipartite graph, then PI(G)= |V (G)| · |E(G)| [1]. The

vertex Co-PI index of G, denoted by Co-PI(G), is defined as Co-PI(G)= ∑
e=uv∈E(G)

|nG
u (e)−nG

v (e)|.

2. Semigraph and Bipartite Graphs Associated with Semi Graph

2.1 Semigraph

Semigraph is a natural generalization of graph where in an edge may have more than two
vertices by containing middle vertices apart from the usual end vertices. Semigraphs, introduced
by Sampathkumar [8], is an interesting type of generalization of the concept of graph. Kamath
and Bhat [2] introduced adjacency domination in semigraphs. Also, Kamath and Hbber [3]
introduced strong and weak domination in semigraphs. Semi graph have elegant pictorial
representation [9] and several results have been extended from graph theory to semigraphs.
Venkatakrishnan and Swaminathan [11] introduced bipartite theory of semigraphs. Given a
semigraph they constructed bipartite graphs which represents the arbitrary graphs.

A semigraph S is a pair (V , X ), where V is a non empty set whose elements are called
vertices of S, and X is a set of n− tuples of distinct vertices called edges of S for various n ≥ 2
satisfying the following conditions:

(a) Any two edges have at most one vertex in common.

(b) Two edges (u1,u2, . . . ,um) and (v1,v2, . . . ,vn) are considered to be equal if and only if
(i) m = n and (ii) either ui = vi for 1≤ i ≤ n or ui = vn−i+1 for 1≤ i ≤ n.

Thus, the edges (u1,u2, . . . ,um) is same as (um,um−1, . . . ,u1).

If E = (v1,v2, . . . ,vn) is an edge of a semigraph, we say that v1 and vn are the end vertices of
the edge E and vi , 2≤ i ≤ n−1, are the middle vertices or m-vertices of the edge e and also the
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vertices v1,v2, . . . ,vn, are said to belong to the edge e. A semigraph with p vertices and q edges
is called a (p, q)-semigraph. Two vertices u and v,u 6= v, in a semigraph are adjacent if both off
them belong to the same edge. The number of vertices in an edge e is called cardinality of e and
it is denoted by |e|. A semigraph S is said to be r-uniform if the cardinality of each edge in S is
r. By introducing n number of middle vertices to each edge of the graph Cm, where Cm is the
cycle with m vertices, we get a semigraph with (n+2) uniform which is denoted as Cm,n.

Example 2.1. Let S = (V , X ) be a semigraph, where V = {1,2, . . . ,10} and X = {(1,2), (3,6,8),
(6,9,10), (2,10), (3,4,5), (1,5)}. The graph S is given in Figure 1.

1 

 

    1       2 

5    10 

        4     9 

      

     3            6           8 

      

 

 
Figure 1

2.2 Bipartite Graphs Associated with Semigraph

Let V ′ be the another copy of the vertex set V of a semigraph S. Then the following graphs
represents the bipartite graphs associated with the semigraph S.

Bipartite graph A(S). The bipartite graph A(S)= (V ,V ′, X ), where X = {(u,v′)/u and v belong
to the same edge of the semigraph S}.

Bipartite graph A+(S). The bipartite graph A+(S) = (V ,V ′, X ), where X = {(u,v′)/u and v
belong to the same edge of the semigraph S}∪ {(u,u′)/u ∈V ,u′ ∈V ′}.

Bipartite graph CA(S). The bipartite graph CA(S) = (V ,V ′, X ), where X = {(u,v′)/u and v
are consecutively adjacent in S}.

Bipartite graph CA+(S). The bipartite graph CA+(S)= (V ,V ′, X ), where X = {(u,v′)/u and v
are consecutively adjacent in S}∪ {(u,u′)/u ∈V ,u′ ∈V ′}.

Bipartite graph VE(S). The bipartite graph V E(S)= (V , X ,Y ), where V is vertex set and X
is the set of edges of the semigraph S and Y = {(u, e)/u ∈V and e ∈ X }.

Pm,1 is a 3 uniform semigraph. The Bipartite graph A(P5,1), the Bipartite graph A+(P5,1),
the Bipartite graph CA(P5,1), the Bipartite graph CA+(P5,1) and the Bipartite graph V E(P5,1)
are given in Figures 2 – 6, respectively.
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Figure 6

The Bipartite graph CA(P5,1) is the disjoint union of two paths and which is a disconnected
graph.
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Theorem 2.2. Let G be the Bipartite graph A(Pm,1). Then W(G) = 1
3 [8m3 +12m2 −20m+9],

PI(G)= 24m2 −36m+12 and Co-PI(G)=
{

12m2 −32m+16, if m is even
12m2 −32m+20, if m is odd

where m = 3,4,5, . . ..

Proof. Let U =V ∪V ′ where V = {1,2, . . . ,2m−1}, V ′ = {1′,2′, . . . , (2m−1)′} and E = {(u,v′)/u and
v belong to the same edge of the semigraph Pm,1} be the vertex set and edge set of the graph G,
respectively.

Let S1 =
2m−1∑

i=1

2m−1∑
j=1
i< j

d(i, j), S2 =
(2m−1)′∑

i=1′

(2m−1)′∑
j=1′
i< j

d(i′, j′) and S3 =
2m−1∑

i=1

(2m−1)′∑
j=1′

d(i, j′). Then W(G)=

S1 +S2 +S3.

Case (i): m is even

S1 +S2 = 2(7m−11)P3 +8[(2m−7)P5 + (2m−11)P7 + . . .+5Pm−1 +Pm+1]

= 4(7m−11)+8[4(2m−7)+6(2m−11)+ . . .+5(m−2)+m] ,

S3 = 6(m−1)P2 + (18m−41)P4 +8[(2m−9)P6 + (2m−13)P8 + . . .+7Pm−2 +3Pm]

= 6(m−1)+3(18m−41)+8[5(2m−9)+7(2m−13)+ . . .+7(m−3)+3(m−1)] ,

W(G)= S1 +S2 +S3 = 1
3

[8m3 +12m2 −20m+9] .

Case (ii): m is odd

S1 +S2 = 2(7m−11)P3 +8[(2m−7)P5 + (2m−11)P7 + . . .+7Pm−2 +3Pm]

= 4(7m−11)+8[4(2m−7)+6(2m−11)+ . . .+7(m−3)+3(m−1)] ,

S3 = 6(m−1)P2 + (18m−41)P4 +8[(2m−9)P6 + (2m−13)P8 + . . .+5Pm−1 +Pm+1]

= 6(m−1)+3(18m−41)+8[5(2m−9)+7(2m−13)+ . . .+5(m−2)+m] ,

W(G)= S1 +S2 +S3 = 1
3

[8m3 +12m2 −20m+9] .

For any m, PI(G)= |U(G)| · |E(G)| = (4m−2)×6(m−1)= 12m2 −24m+12.

If m is even, then

Co-PI(G)= ∑
e=uv∈E(G)

|nG
u (e)−nG

v (e)|

= 4[4+12+20+ . . .+ (4m−12)]+8[8+16+24+ . . .+ (4m−8)]

= 12m2 −32m+16 .
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If m is odd, then

Co-PI(G)= ∑
e=uv∈E(G)

|nG
u (e)−nG

v (e)|

= 8[4+12+20+ . . .+ (4m−8)]+4[8+16+24+ . . .+ (4m−12)]

= 12m2 −32m+20 .

Theorem 2.3. Let G be the Bipartite graph A+(Pm,1). Then W(G)= 1
3 [8m3 +12m2 −32m+15],

D(G)= 32m3 −68m2 +48m−11, PI(G)= 32m2 −44m+14, where m = 3,4,5, . . . .

Proof. Let U =V ∪V ′, where V = {1,2, . . . ,2m−1}, V ′ = {1′,2′, . . . , (2m−1)′} and E = {(u,v′)/u and
v belong to the same edge of the semigraph Pm,1}∪ {(u,u′)/u ∈V ,u′ ∈V ′} be the vertex set and

edge set of the graph G, respectively. Let S1 =
2m−1∑

i=1

2m−1∑
j=1
i< j

d(i, j), S2 =
(2m−1)′∑

i=1′

(2m−1)′∑
j=1′
i< j

d(i′, j′) and

S3 =
2m−1∑

i=1

(2m−1)′∑
j=1′

d(i, j′). Then W(G)= S1 +S2 +S3.

Case (i): m is even

S1 +S2 = 2(7m−11)P3 +8[(2m−7)P5 + (2m−11)P7 + . . .+5Pm−1 +Pm+1]

= 4(7m−11)+8[4(2m−7)+6(2m−11)+ . . .+5(m−2)+m] ,

S3 = (8m−7)P2 + (16m−40)P4 +8[(2m−9)P6 + (2m−13)P8 + . . .+7Pm−2 +3Pm]

= (8m−7)+3(16m−40)+8[5(2m−9)+7(2m−13)+ . . .+7(m−3)+3(m−1)] ,

W(G)= S1 +S2 +S3 = 1
3

[8m3 +12m2 −32m+15] .

Case (ii): m is odd

S1 +S2 = 2(7m−11)P3 +8[(2m−7)P5 + (2m−11)P7 + . . .+7Pm−2 +3Pm]

= 4(7m−11)+8[4(2m−7)+6(2m−11)+ . . .+7(m−3)+3(m−1)] ,

S3 = (8m−7)P2 + (16m−40)P4 +8[(2m−9)P6 + (2m−13)P8 + . . .+5Pm−1 +Pm+1]

= (8m−7)+3(16m−40)+8[5(2m−9)+7(2m−13)+ . . .+5(m−2)+m] ,

W(G)= S1 +S2 +S3 = 1
3

[8m3 +12m2 −32m+15] .

Now D(G) = S1 + S2 + S3, where S1 = S2 = (2m−1)(2m−2)
2 P4m−3, S3 = (2m − 1)2P4m−2, and

D(G)= 32m3 −68m2 +48m−11.

For any m, PI(G)= |U(G)| · |E(G)| = (4m−2)× (8m−7)= 32m2 −44m+14.
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Note. Since the Bipartite graph A+(Pm,1) have 2m−1 more edges than the Bipartite graph
A(Pm,1) and nG

u (e)= nG
u′(e)= 2m−1, Co-PI(A(Pm,1)) and Co-PI(A+(Pm,1)) are the same.

Theorem 2.4. Let G be the Bipartite graph CA+(Pm,1). Then W(G)= 1
3 [16m3 −12m2 −4m+3],

D(G) = 32m3 −74m2 +64m−21, PI(G) = 24m2 −32m+10, Co-PI(G) = 8m2 −16m+8, where
m = 3,4,5, . . . .

Proof. Let U =V ∪V ′, where V = {1,2, . . . ,2m−1}, V ′ = {1′,2′, . . . , (2m−1)′} and E = {(u,v′)/u and
v are consecutively adjacent in the semigraph Pm,1}∪ {(u,u′)/u ∈ V , u′ ∈ V ′} be the vertex set

and edge set of the graph G, respectively. Let S1 =
2m−1∑

i=1

2m−1∑
j=1
i< j

d(i, j), S2 =
(2m−1)′∑

i=1′

(2m−1)′∑
j=1′
i< j

d(i′, j′)

and S3 =
2m−1∑

i=1

(2m−1)′∑
j=1′

d(i, j′).

Then W(G)= S1 +S2 +S3, where

S1 +S2 = (8m−10)P3 + (8m−18)P5 + . . .+6P2m−1

= 2(8m−10)+4(8m−18)+ . . .+6(2m−2) ,

S3 = (6m−5)P2 + [(8m−14)P4 + (8m−22)P6 + . . .+2P2m]

= (6m−5)+ [3(8m−14)+5(8m−22)+ . . .+2P2m] ,

W(G)= S1 +S2 +S3 = 1
3

[16m3 −12m2 −4m+3] .

Now, D(G)= S1 +S2 +S3, where

S1 +S2 = 4[P2m+1 +P2m+3 + . . .+P4m−5]+ (4m2 −10m+10)P4m−3

= 4[(2m)+ (2m+2)+ . . .+ (4m−6)]+ (4m2 −10m+10)(4m−4)

= 4[(
m−2

2
)(6m−6)]+ (4m2 −10m+10)(4m−4) ,

S3 = (2m−1)P2 +2[P2m+2 +P2m+4 + . . .+P4m−4]+ (4m2 −6m+4)P4m−2

= (2m−1)+2[(
m−2

2
)(6m−4)]+ (4m2 −6m+4)(4m−3) ,

D(G)= 32m3 −74m2 +64m−21 .

For any m, PI(G) = |U(G)| · |E(G)| = (4m− 2)× (6m− 5) = 24m2 − 32m+ 10 and Co-PI(G) =∑
e=uv∈E(G)

|nG
u (e)−nG

v (e)| = 4[(4m−6)+ (4m−10)+ . . .+2]= 8m2 −16m+8.

Theorem 2.5. Let G be the Bipartite graph V E(Pm,1). Then W(G)= D(G)= 3m3−3m2−3m+3,
PI(G)= 9m2 −15m+6 and Co-PI(G)= 6m2 −13m+8, where m = 3,4,5, . . . .

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 3, pp. 741–750, 2017



748 Bipartite Graphs Associated with 3 Uniform Semigraphs of Trees. . . : V. Kala Devi and K. Marimuthu

Proof. Let U = V ∪V ′, where V = {1,2, . . . ,2m−1}, V ′ = {e1, e2, . . . , em−1} and E = {(e i, j)/1 ≤ i ≤
m−1, j = 2i−1, 2i, 2i+1} be the vertex set and edge set of the graph G, respectively. Let

S1 =
2m−1∑

i=1

2m−1∑
j=1
i< j

d(i, j), S2 =
m−1∑
i=1

m−1∑
j=1
i< j

d(e i, e j) and S3 =
2m−1∑

i=1

m−1∑
j=1

d(i, e j). Then W(G)= S1+S2+S3,

where

S1 +S2 = (4m−5)P3 + [(5m−11)P5 + (5m−16)P7 + . . .+14P2m−5 +9P2m−3]+4P2m−1

= 2(4m−5)+ [4(5m−11)+6(5m−16)+ . . .+14(2m−4)+9(2m−2)]+4(2m−2) ,

S3 = 3(m−1)P2 + [(4m−8)P4 + (4m−12)P6 + . . .+8P2m−4]+4P2m−2

= 6(m−1)+ [3(4m−8)+5(4m−12)+ . . .+8(2m−5)]+4(2m−3) ,

W(G)= 3m3 −3m2 −3m+3 .

Since G is a tree and d(u,v)= D(u,v), for all u,v ∈G, Wiener index and Detour index are the
same. For any m, PI(G)= |U(G)| · |E(G)| = (3m−2)× (3m−3)= 9m2 −15m+6.

Finally, let e = (u,v′). If m is even, then |nG
u (e)−nG

v′(e)| = either 2,4,8,10, . . . ,3m−4.

Co-PI(G) = 2[2+ 4+ 8+ . . .+ (3m − 8)]+ (m − 1)(3m − 4) = 6m2 − 13m + 8. If m is odd, then
|nG

u (e)−nG
v′(e)| = either 1,5,7,11, . . . or 3m−8.

Co-PI(G)= 2[1+5+7+ . . .+ (3m−8)]+ (m−1)(3m−4)= 6m2 −13m+8.

Theorem 2.6. Let G be the Bipartite graph A(Sm,1). Then W(G) = 2m2 −36m+17, D(G) =
44m2−68m+27, PI(G)= 24m2−36m+12 and Co-PI(G)= 16m2−48m+32, where m = 3,4,5, . . . .

Proof. Let U =V ∪V ′, where V = {1,2, . . . ,2m−1}, V ′ = {1′,2′, . . . , (2m−1)′} and E = {(u,v′)/u and
v belong to the same edge of the semigraph Sm,1} be the vertex set and edge set of the graph G,

respectively. Let S1 =
2m−1∑

i=1

2m−1∑
j=1
i< j

d(i, j), S2 =
(2m−1)′∑

i=1′

(2m−1)′∑
j=1′
i< j

d(i′, j′) and S3 =
2m−1∑

i=1

(2m−1)′∑
j=1′

d(i, j′).

Then W(G)= S1+S2+S3, where S1+S2 = (4m2−6m+2)P3 = 8m2−12m+4, S3 = (6m−5)P2+
(4m2 −10m+6)P4 = 12m2 −24m+13 and W(G)= 20m2 −36m+17. D(G)= S1 +S2 +S3, where
S1+S2 = (4m−4)P5+(4m2−10m+6)P7 = 24m2−44m+20, S3 = (2m−1)P4+(4m2−6m+2)P6 =
20m2 −24m+7 and D(G)= 44m2 −68m+27.

Finally for any m, PI(G)= |U(G)| · |E(G)| = (4m−2)× (6m−6)= 24m2 −36m+12.

Finally, let e = (1,v′), then nG
1 (e)= 4m−5, nG

v′(e)= 3 and let e = (v,1′). Otherwise nG
u (e)= nG

v′(e)=
2m−1. Co-PI(G)= (4m−4)(4m−8)= 16m2 −48m+32.

Theorem 2.7. Let G be the Bipartite graph A+(Sm,1). Then W(G)= 20m2 −40m+21, PI(G)=
32m2 −44m+14, where m = 3,4,5, . . . .
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Proof. Let U =V∪V ′, where V = {1,2, . . . ,2m−1}, V ′ = {1′,2′, . . . , (2m−1)′} and E = {(u,v′)/u and v
belong to the same edge of the semigraph Sm,1}∪{(u,u′)/u ∈V ,u′ ∈V ′} be the vertex set and edge

set of the graph G, respectively. Let S1 =
2m−1∑

i=1

2m−1∑
j=1
i< j

d(i, j), S2 =
(2m−1)′∑

i=1′

(2m−1)′∑
j=1′
i< j

d(i′, j′) and S3 =

2m−1∑
i=1

(2m−1)′∑
j=1′

d(i, j′). Then W(G)= S1+S2+S3, where S1+S2 = (4m2−6m+2)P3 = 8m2−12m+4,

S3 = (8m−7)P2 + (4m2 −12m+8)P4 = 12m2 −28m+17 and W(G)= 20m2 −40m+21.

For any m, PI(G)= |U(G)| · |E(G)| = (4m−2)× (8m−7)= 32m2 −44m+14.

Note. Since the Bipartite graph A+(Sm,1) have 2m−1 more edges than the Bipartite graph
A(Sm,1) and nG

u (e)= nG
u′(e)= 2m−1, Co-PI(A(Sm,1)) and Co-PI(A+(Sm,1)) are the same.

Theorem 2.8. Let G be the Bipartite graph CA+(Sm,1). Then W(G) = 28m2 − 60m + 33,
D(G) = 68m2 −88m+23, PI(G) = 24m2 −32m+10 and Co-PI(G) = 16m2 −48m+32, where
m = 3,4,5, . . . .

Proof. Let U =V ∪V ′, where V = {1,2, . . . ,2m−1}, V ′ = {1′,2′, . . . , (2m−1)′} and E = {(u,v′)/u and
v consecutively adjacent in the semigraph Sm,1}∪ {(u,u′)/u ∈V , u′ ∈V ′} be the vertex set and

edge set of the graph G respectively. Let S1 =
2m−1∑

i=1

2m−1∑
j=1
i< j

d(i, j), S2 =
(2m−1)′∑

i=1′

(2m−1)′∑
j=1′
i< j

d(i′, j′) and

S3 =
2m−1∑

i=1

(2m−1)′∑
j=1′

d(i, j′). Then W(G)= S1+S2+S3, where S1+S2 = (m2+3m−4)P3+(3m2−9m+
6)P5 = 14m2−30m+16, S3 = (6m−5)P2+(3m2−7m+4)P4+(m2−3m+2)P6 = 14m2−30m+17 and
W(G)= 28m2−60m+33. For any m, PI(G)= |U(G)|·|E(G)| = (4m−2)×(6m−5)= 24m2−32m+10.

Finally, let e = (u,u′), u = 1,2, . . . ,2m − 1, then nG
u (e) = nG

u′(e) = 2m − 1, let e = (1,u′),
u = 2,4,6, . . . ,2m−2, then nG

1 (e) = 4m−6, nG
u′(e) = 4 and let e = (u,1′), u = 2,4,6, . . . ,2m−2,

then nG
u (e) = 4, nG

1′(e) = 4m − 6. Otherwise, nG
u (e) = 4m − 4, nG

v′(e) = 2. Then Co-PI(G) =
2(m−1)(4m−10)+ (2m−1)(4m−6)= 16m2 −48m+32.

Theorem 2.9. Let G be the Bipartite graph V E(Sm,1). Then W(G) = D(G) = 15m2 −36m+21,
PI(G)= 9m2 −15m+6 and Co-PI(G)= 9m2 −25m+16, where m = 3,4,5, . . . .

Proof. Let U = V ∪V ′, where V = {1,2, . . . ,2m−1}, V ′ = {e1, e2, . . . , em−1} and E = {(e i, j)/1 ≤
i ≤ m − 1, j = 1,2i,2i + 1} be the vertex set and edge set of the graph G, respectively.

Let S1 =
2m−1∑

i=1

2m−1∑
j=1
i< j

d(i, j), S2 =
m−1∑
i=1

m−1∑
j=1
i< j

d(e i, e j) and S3 =
2m−1∑

i=1

m−1∑
j=1

d(i, e j). Then W(G) =

S1 + S2 + S3, where S1 + S2 = 1
2 (m2 + 3m− 4)P3 + (2m2 − 6m+ 4)P5 = 9m2 − 21m+ 12, S3 =

3(m− 1)P2 + (2m2 − 6m+ 4)P4 = 6m2 − 15m+ 9 and W(G) = 15m2 − 36m+ 21. Since G is a
tree and d(u,v) = D(u,v), for all u,v ∈ G, Wiener index and Detour index are the same. For
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any m, PI(G) = |U(G)| · |E(G)| = (3m− 2)× (3m− 3) = 9m2 − 15m+ 6. Finally, let e = (1, e i),
i = 1,2, . . . ,m−1, then nG

1 (e) = 3m−5, nG
e i

(e) = 3. Otherwise, nG
u (e) = 1, nG

v′(e) = 3m−3. Then
Co-PI(G)= (m−1)(3m−8)+ (2m−2)(3m−4)= 9m2 −25m+16.
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