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Fuzzy Economic Order Quantity for Items with Imperfect
Quality and Inspection Errors in an Uncertain Environment

on Fuzzy Parameters

K. Nithya and W. Ritha

Abstract. This article investigates the inventory problem for item received
with imperfect quality and inspection errors in an uncertain environment. Two
inventory models are discussed with fuzzy parameters for crisp order quantity, or
for fuzzy order quantity. Function principle is proposed as an arithmetic operation
of fuzzy trapezoidal number to obtain fuzzy economic order quantity and fuzzy
annual profit. Graded mean integration method is used for defuzzification of
the annual profit. Extension of Lagrangian method is used to find optimal order
quantity. Numerical examples are provided to illustrate the results of proposed
models.

1. Introduction

Based on the setup cost and the inventory carrying cost we obtain an economic
order quantity or EPQ. First assume that the quality of all the items produced were
perfect. Secondly assume that the screening process is error free which find out the
defective items which are an idealistic approach. The defective occurs due to the
bad material quality, improper in process control, inefficient machines and transit
damage. Hence it requires optimal order quantity which gives error during the
screening of a defective lot.

A number of researchers have not used the perfect quality assumption. Portens
(1986) studied the effect of defective items on the basic of EOQ model. Rosenblatt
and Lee (1986) assumed that the time between the in control and the out of
control state of a process follows an exponential distribution and that the defective
items are reworked instantaneously. Lee and Rosenblatt (1987) studied a joint lot
sizing and inspection policy for an EOQ model with a fixed percentage of defective
products. Rekik et al. (2007) extended the work of inderfurth (2004) for two cases:

(a) an additive errors case where the variability of errors is independent of the
order quantity, and
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(b) a multiplicative errors case where the variability of errors is proportional to
the order quantity.

Recently, Salameh and Jaber (2000), has been receiving attention. They studied
a joint lot sizing and inspection policy for an EOQ model when a random
proportion of the units in a lot are defective. They assumed a 100% screening
process with no human error. The S and J model suggested that the imperfect
items are not reworked but just withdrawn from the received lot. It is also assumed
that there is no human error in the screening process. Raouf et al. (1983) studied
human error in inspection planning.

They extended the Raouf et al. (1983) inspection plan for the case of a number
of misclassifications. Duffuaa and Khan (2005) carried out a sensitivity analysis
to study the effect of different types of misclassification on the optimal inspection
plan.

The S and J model by assuming that the screening process is not error-free. An
imperfect process is utilized to describe the defective proportion of the received
lot. i.e., the inspector may commit error while screening. The probability of
misclassification errors is assumed to be known. The inspection process would
consist of three cost (a) cost of inspection, (b) cost of Type I error, (c) cost of Type
II error. The defective items classified by the inspector and the buyer would be
salvaged as a single batch that is sold at a lower price.

In this article investigate the inventory model for items with imperfect quality
and inspection errors. Two inventory models are discussed. The first model is fuzzy
inventory model for crisp order quantity. The second model, fuzzy inventory model
for fuzzy order quantity. To find the estimate of total net profit in the fuzzy sense
and then derive the corresponding optimal lot size.

2. Notations

The following notations are used

D : Number of units demanded per year.
y : Order size.
C : Unit variable cost.
K : Fixed ordering cost.
A : A parameter used for simplifying the holding cost.
S : Unit selling price of a non defective item.
A : Unit selling price of a defective item.
x : Screening rate.
d : Unit screening cost
h : Unit holding cost
T : Cycle length
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m1 : Probability of Type I error (classifying a nondefective item as
defective)

m2 : Probability of Type II error (classifying a defective item as a
nondefective)

p : Probability that an item is defective.
t1 : Inspection time in a cycle.
t2 : the remaining time in a cycle, after the defective items are screened

out.
f (P) : probability density function of P.
f (m1) : probability density function of m1.
f (m2) : probability density function of m2.
B1 : number of items that are classified as defective in one cycle.
B2 : number of defective items that are returned from the market in one

cycle.
Ca : cost of accepting a defective item.
Cr : cost of rejecting a nondefective item.
∗ : the super script representing optimal value.

3. Mathematical Model

Figure 1 shows how the inventory behaves with a buyer or a retailer. It should be
noted here that this behavior was suggested by S and J (2000). The screening and
consumption of the inventory continues until time t1, after which all the defectives
(B1) are withdrawn from inventory as a single batch and are sold to the secondary
market. The consumption process continues at the demand rate until the end of
cycle time T . Due to inspection error, some of the items used to fulfill the demand
would be defective. These defective items are later returned to the inventory and
are shown in Figure 1 as B2. To avoid shortages, it is assumed that the number
of non-defective items is at least equal to adjusted demand, that is the sum of the
actual demand and items that are replaced for the ones returned from the market
over T . i.e.

y(1− p)(1−m1)> DT

So for the limiting case, the cycle length can be written as T = y(1−p)(1−m)
D

. It
should be noted that the above expression is unaffected by the Type II error and
reduces to the cycle length in S and J if the Type I error becomes zero.

The total cost per cycle C , consists of procurement cost, screening cost, holding
cost.

C = K + C y + d y + Cr(1− p)m1 y + Cp p ym2

+
h

2

�
2

x
− D

x2 +
A2

D

�
y2 + ypm2T

where A= 1− D/x − (m1 + p) + p(m1 +m2).
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Figure 1. Behavior of the inventory level over time.

Figure 1 depicts the behavior of different types of inventory in the order cycle.
The (red) triangle at the bottom represents the defective lot that is returned by the
market and is accumulated into the salvaged lot.

The total profit per cycle can now be written as the different between the total
revenue and total cost per cycle is

T P(y) = S y(1− p)(1−m1) + S ypm2 + V y(1− p)m1 + V yp

−
�

K + C y + d y + Cr(1− p)ym1 + Ca p ym2

+
h

2

�
2

x
− D

x2 +
A2

D

�
y2 + ypm2T

�
.

Since p, m1 and m2 are random variables with probability density functions f (p),
f (m1) and f (m2), the annual profit can be written as

T PU(y) =
T P(y)

T

= SD+
SDpm2

(1− p)(1−m1)
+

V Dm1

1−m1
+

V Dp

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− KD

y
− C D− dD− Cr(1− p)m1D

− Ca pm2D− h

2

�
2

x
− D

x2 +
A2

D

�
yD
�
− h

2
ypm2 .
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Also, the optimal order size that represents the maximum annual profit, is
determined by setting the first derivative equal to zero and solving for y to get

y∗ =

√√√√ 2KD

hpm2(1− p)(1−m1) + hD
�

2
x
− D

x2 +
A2

D

� .

4. Methodology

4.1. Graded Mean Integration Representation Method

S.H. Chen and C.H. Hsien (1999) introduced Graded Mean Integration
Representation method based on the integral value of graded mean h-level of
generalized fuzzy number for defuzzifying generalized fuzzy number.

Suppose A is a generalized fuzzy number as shown in Figure 2. It is described
as any fuzzy subset of the real line R, whose membership function, µeA satisfies the
following conditions:

(i) µeA(x) is a continuous mapping from R to the closed interval [0, 1].

(ii) µeA(x) = 0, −∞< x ≤ a1,

(iii) µeA(x) = L(x) is strictly increasing on [a1, a2],

(iv) µeA(x) = wA, a2 ≤ x ≤ a3,

(v) µeA(x) = R(x) is strictly decreasing on [a3, a4],

(vi) µeA(x) = 0, a4 ≤ x <∞,

where 0< wA ≤ 1, and a1, a2, a3 and a4 are real numbers.
Also this type of generalized fuzzy number be denoted as eA = (a1, a2, a3, a4;

wA)LR. When wA = 1, it can be simplified as eA= (a1, a2, a3, a4)LR.
Second, by Graded Mean Integration Representation Method L−1 and R−1 are

the inverse functions of L and R, respectively, and the graded mean h-level

Figure 2. The graded mean h-level value of generalized fuzzy number.
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eA= (a1,a2,a3,a4;wA)LR

Value of generalized fuzzy number eA = (a1, a2, a3, a4; wA)L is h is h(L−1(h) +
R−1(h))/2. Then Graded Mean Integration Representation of A and P (eA) with
grate WA, where

P(eA) =
∫ wA

0

h
�

L−1(h) + R−1(h)
2

�
dh
�∫ wA

0

h dh

with 0< h≤ wA and 0< wA ≤ 1.
Throughout this paper, we have use and only popular trapezoidal fuzzy

number as the type of all fuzzy parameters in our proposed fuzzy production
inventory models. Let eB be a trapezoidal fuzzy number, and be denoted as
eB = (b1, b2, b3, b4). Then we can get the Graded Mean Integration Representation
of eB by formula (1) as

P(eB) =
∫ 1

0

h
�

b1 + b4 + (b2 − b1 − b4 + b3)h
2

�
dh
�∫ 1

0

h dh

=
b1 + 2b2 + 2b3 + b4

6
.

4.2. The Fuzzy Arithmetical Operations under Function Principle

The fuzzy arithmetical operations under function principle.

In S.H. Chen (1985), Function principle is proposed to be as the fuzzy
arithmetical operations by trapezoidal fuzzy numbers. We describe some fuzzy
arithmetical operations under Function principle as follows:

Suppose eA = (a1, a2, a3, a4) and eB = (b1, b2, b3, b4) are two fuzzy trapezoidal
fuzzy numbers. Then

(a) The addition of eA and eB is

eA⊕ eB = (c1, c2, c3, c4)

where T = {a1 + b1, a2 + b2, a3 + b3, a4 + b4}
where a1, a2, a3, a4, b1, b2, b3 and b4 are any real numbers.

(b) The multiplication of eA and eB is

eA⊕ eB = (c1, c2, c3, c4)

where T = {a1 b1, a2 b2, a3 b3, a4 b4}, T1 = {a2 b2, a2 b3, a3 b2, a3 b3},
C1 =min T , C2 =min T1, C3 =max T , C4 =max T1.
If a1, a2, a3, a4, b1, b2, b3 and b4 are all non zero positive real numbers, then

eA⊗ eB = {a1 b1, a2 b2, a3 b3, a4 b4}
(c) −eB = (−b4,−b3,−b2,−b1), then the subtraction of eA and eB is

eA	 eB = {a1 − b4, a2 − b3, a3 − b2, a4 − b1}
where a1, a2, a3, a4, b1, b2, b3 and b4 are any real numbers.
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(d) 1
eB =

eB−1 =
�

1
b4

, 1
b3

, 1
b2

, 1
b1

�
, where b1, b2, b3 and b4 are any real numbers. If a1,

a2, a3, a4, b1, b2, b3 and b4 are all non zero positive real numbers, then the
division of eA and eB is

eA� eB =
�

a1

b4
,

a2

b3
,

a3

b2
,

a4

b1

�

(e) Let x ∈ R. Then
(i) a ≥ 0, α⊗ eA= (αa1,αa2,αa3,αa4)

(ii) a < 0, α⊗ eA= (αa4,αa3,αa2,αa1)

5. Fuzzy Inventory Model

5.1. The Fuzzy Inventory Model for Crisp Order Size

Let eD = (D1, D2, D3, D4), eS = (S1, S2, S3, S4), eV = (V1, V2, V3, V4), eK =
(K1, K2, K3, K4), eA = (A1, A2, A3, A4), eh = (h1, h2, h3, h4), ed = (d1, d2, d3, d4), Cr =
(Cr1

, Cr2
, Cr3

, Cr4
), Ca = (Ca1

, Ca2
, Ca3

, Ca4
) be trapezoidal numbers.

Net profit per unit time in fuzzy sense is given by

T̃ PU(y) =
�

S1D1 +
S1D

1 P m2

(1− p)(1−m1)
+

V1D1m1

1−m1
+

V1D
1 P

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D4K4

y
− C4D4 − d4D4 − Cr4

(1− p)m1D4

− Ca4
pm2D4 −

h4

2

2

x
y +

h1

2

D2
1

x2 y − h4

2
A2

4 y
�
− h4

2
ypm2,

S2D2 +
S2D2pm2

(1− p)(1−m1)
+

V2D2m1

1−m1
+

V2D2p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D3K3

y
− C3D3 − d3D3 − Cr3

(1− p)m1D3

− Ca3
pm2D3 −

h3

2

2

x
y +

h2

2

D2
2

x2 y − h3

2
A2

3 y
�
− h3

2
ypm2,

S3D3 +
S3D3pm3

(1− p)(1−m1)
+

V3D3m1

1−m1
+

V3D3p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D2K2

y
− C2D2 − d2D2 − Cr2

(1− p)m1D2

− Ca2
pm2D2 −

h2

2

2

x
y +

h3

2

D2
3

x2 y − h2

2
A2

2 y
�
− h2

2
ypm2,

S4D4 +
S4D4pm2

(1− p)(1−m1)
+

V4D4m1

1−m1
+

V4D4p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D1K1

y
− C1D1 − d1D1 − Cr1

(1− p)m1D1
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− Ca1
pm2D1 −

h1

2

2

x
y +

h4

2

D2
4

x2 y − h1

2
A2

1 y
�
− h1

2
ypm2

�
(5.1)

P(T̃ PU(y)) =
1

6

��
S1D1 +

S1D1pm2

(1− p)(1−m1)
+

V1D1m1

1−m1
+

V1D1p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D4K4

y
− C4D4 − d4D4 − Cr4

(1− p)m1D4

− Ca4
pm2D4 −

h4

2

2

x
y +

h1

2

D2
1

x2 y − h4

2
A2

4 y
�
− h4

2
ypm2

�

+ 2
�

S2D2 +
S2D2pm2

(1− p)(1−m1)
+

V2D2m1

1−m1
+

V2D2p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D3K3

y
− C3D3 − d3D3 − Cr3

(1− p)m1D3

− Ca3
pm2D3 −

h3

2

2

x
y +

h2

2

D2
2

x2 y − h3

2
A2

3 y
�
− h3

2
ypm2

�

+ 2
�

S3D3 +
S3D3pm3

(1− p)(1−m1)
+

V3D3m1

1−m1
+

V3D3p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D2K2

y
− C2D2 − d2D2 − Cr2

(1− p)m1D2

− Ca2
pm2D2 −

h2

2

2

x
y +

h3

2

D2
3

x2 y − h2

2
A2

2 y
�
− h2

2
ypm2

�

+
�

S4D4 +
S4D4pm2

(1− p)(1−m1)
+

V4D4m1

1−m1
+

V4D4p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D1K1

y
− C1D1 − d1D1 − Cr1

(1− p)m1D1

− Ca1
pm2D1 −

h1

2

2

x
y +

h4

2

D2
4

x2 y − h1

2
A2

1 y
�
− h1

2
ypm2

��
. (5.2)

Differentiating (5.2) partially with respect to y and equating to zero for
maximum profit we have,

y∗=
√√√√√√√√√√√

2(K4D4 + 2K3D3 + 2K2D2 + K1D1)


2
x
(h1D4 + 2h2D2 + 2h3D3 + h4D4)

− 1
x2 (h1D2

1 + 2h2D2
2 + 2h3D2

3 + h4D2
4)

×(h1A2
1 + 2h2A2

2 + 2h3A2
3 + h4A2

4)

+(1− p)(1−m1)pm2(h1 + 2h2 + 2h3 + h4)




. (5.3)

5.2. Fuzzy Inventory Model for Fuzzy Order Size

In this section, we introduced the fuzzy inventory model, by changing the crisp
order size quantity in section 5.1 into fuzzy in order size.

Suppose fuzzy order size quantity ey to be trapezoidal fuzzy number.



Fuzzy Economic Order Quantity for Items with Imperfect Quality and Inspection Errors 277

ey = (y1, y2, y3, y4) with 0< y1 ≤ y2 ≤ y3 ≤ y4.

T̃ PU(y) =
�

S1D1 +
S1D1pm2

(1− p)(1−m1)
+

V1D1m1

1−m1
+

V1D1p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D4K4

y1
− C4D4 − d4D4 − Cr4

(1− p)m1D4

− Ca4
pm2D4 −

h4

2

2

x
y4D4 +

h1

2

D2
1

x2 y1 −
h4

2
A2

4 y4

�
− h4

2
y4pm2,

S2D2
S2D2pm2

(1− p)(1−m1)
+

V2D2m1

1−m1
+

V2D2p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D3K3

y2
− C3D3 − d3D3 − Cr3

(1− p)m1D3

− Ca3
pm2D3 −

h3

2

2

x
y3D3 +

h2

2

D2
2

x2 y2 −
h3

2
A2

3 y3

�
− h3

2
y3pm2,

S3D3 +
S3D3pm3

(1− p)(1−m1)
+

V3D3m1

1−m1
+

V3D3p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D2K2

y3
− C2D2 − d2D2 − Cr2

(1− p)m1D2

− Ca2
pm2D2 −

h2

2

2

x
y2D2 +

h3

2

D2
3

x2 y3 −
h2

2
A2

2 y2

�
− h2

2
y2pm2,

S4D4 +
S4D4pm2

(1− p)(1−m1)
+

V4D4m1

1−m1
+

V4D
4 P

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D1K1

y4
− C1D1 − d1D1 − Cr1

(1− p)m1D1

− Ca1
pm2D1 −

h1

2

2

x
y1D1 +

h4

2

D2
4

x2 y4 −
h1

2
A2

1 y1

�
− h1

2
y1Pm2

�

(5.4)

P(T̃ PU(y)) =
1

6

��
S1D1 +

S1D1pm2

(1− p)(1−m1)
+

V1D1m1

1−m1
+

V1D1p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D4K4

y1
− C4D4 − d4D4 − Cr4

(1− p)m1D4

− Ca4
pm2D4 −

h4

2

2

x
y4D4 +

h1

2

D2
1

x2 y1 −
h4

2
A2

4 y4

�
− h4

2
y4pm2

+ 2
�

S2D2 +
S2D2pm2

(1− p)(1−m1)
+

V2D2m1

1−m1
+

V2D
2 P

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D3K3

y2
− C3D3 − d3D3 − Cr3

(1− p)m1D3

− Ca3
pm2D3 −

h3

2

2

x
y3D3 +

h2

2

D2
2

x2 y2 −
h3

2
A2

3 y3

�
− h3

2
y3pm2

�
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+ 2
�

S3D3 +
S3D3pm3

(1− p)(1−m1)
+

V3D3m1

1−m1
+

V3D3p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D2K2

y3
− C2D2 − d2D2 − Cr2

(1− p)m1D2

− Ca2
pm2D2 −

h2

2

2

x
y2D2 +

h3

2

D2
3

x2 y3 −
h2

2
A2

2 y2

�
− h2

2
y2pm2

�

+
�

S4D4 +
S4D4pm2

(1− p)(1−m1)
+

V4D4m1

1−m1
+

V4D4p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D1K1

y1
− C1D1 − d1D1 − Cr1

(1− p)m1D1

− Ca1
pm2D1 −

h1

2

2

x
y1D1 +

h4

2

D2
4

x2 y4 −
h1

2
A2

1 y1

�
− h1

2
y1pm2

��
. (5.5)

with 0< y1 ≤ y2 ≤ y3 ≤ y4.
It will not change the meaning of formula (5.5) if we replace inequality

conditions with 0 < y1 ≤ y2 ≤ y3 ≤ y4 into the following inequality y2 − y1 ≥ 0,
y3 − y2 ≥ 0, y4 − y3 ≥ 0 and y1 ≥ 0. Extension of the Lagrangian Method is used
to find the solution of y1, y2, y3, and y4.

Step 1:

Solve the constraint problem

P(T̃ PU(y)) =
1

6

��
S1D1 +

S1D1pm2

(1− p)(1−m1)
+

V1D1m1

1−m1
+

V1D1p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D4K4
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− C4D4 − d4D4 − Cr4

(1− p)m1D4

− Ca4
pm2D4 −

h4

2
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x
y4D4 +
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D2
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x2 y1 −
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2
A2

4 y4
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y4pm2,
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�

S2D2 +
S2D2pm2

(1− p)(1−m1)
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V2D2m1

1−m1
+

V2D2p
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�
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(1− p)(1−m1)
+

V3D3m1

1−m1
+

V3D3p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D2K2

y3
− C2D2 − d2D2 − Cr2

(1− p)m1D2

− Ca2
pm2D2 −

h2

2

2

x
y2D2 +

h3

2

D2
3

x2 y3 −
h2

2
A2

2 y2

�
− h2

2
y2pm2

�
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+
�

S4D4 +
S4D4pm2

(1− p)(1−m1)
+

V4D4m1

1−m1
+

V4D4p

(1− p)(1−m1)

+
1

(1− p)(1−m1)

�
− D1K1

y1
− C1D1 − d1D1 − Cr1

(1− p)m1D1

− Ca1
pm2D1 −

h1

2

2

x
y1D1 +

h4

2

D2
4

x2 y4 −
h1

2
A2

1 y1

�
− h1

2
y1pm2

��
.

By taking the derivative of P(T̃ PU(y)) with respect to y1, y2, y3, and y4, and
let all the partial derivatives equal to zero. We get

y1 =

√√√√ 2K4D4

h1

h
2
x

D1 − D2
1

x2 + A2
1

i
+ pm2h1(1− p)(1−m1)

,

y2 =

√√√√ 4K3D3

2h2

h
2
x

D2 − D2
2

x2 + A2
2

i
+ 2pm2h2(1− p)(1−m1)

,

y3 =

√√√√ 4K2D2

2h3

h
2
x

D3 − D2
3

x2 + A2
3

i
+ 2pm2h3(1− p)(1−m1)

,

y4 =

√√√√ 2K1D1

h4

h
2
x

D4 − D2
4

x2 + A2
4

i
+ pm2h4(1− p)(1−m1)

.

Because the above show that y1 > y2 > y3 > y4, it does not satisfy the
constraint 0< y1 ≤ y2 ≤ y3 ≤ y4.

Step 2:

Convert the inequality constraint y2− y1 ≥ 0 into equality constraint y2− y1 = 0
and optimize P(T̃ PU(y)) subject y2− y1 = 0 by the Lagrangian Method. We have
Lagrangian function as L(y1, y2, y3, y4,λ) = P(T̃ PU(y))−λ1(y2 − y1).

Taking the partial derivatives of L(y1, y2, y3, y4,λ) with respect to y1, y2, y3,
y4 and λ1. Let all the partial derivatives equal to zero and solve y1, y2, y3, y4 and
λ1.

y1 = y2 =

√√√√√√
2(K4D4 + 2K3D3) 

2
x
[h1D1 + 2h2D2] + (h1A2

1 + 2h2A2
2)− 1

x2 (h1D2
1 + 2h2D2

2)

+(h1 + 2h2)pm2h4(1− p)(1−m1)

! ,

y3 =

√√√√ 4K2D2

2h3

h
2
x

D3 − D2
3

x2 + A2
3

i
+ 2h3pm2(1− p)(1−m1)

,
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y4 =

√√√√ 2K1D1

h4

h
2
x

D4 − D2
4

x2 + A2
2

i
+ h4pm2(1− p)(1−m1)

.

Because the above results show that y1 > y4, is does not satisfy the constraint
0 < y1 ≤ y2 ≤ y3 ≤ y4. Therefore it is not a local optimum. Similarly, we can
get the same result if we select any other one inequality constraint to be equality
constraint.

Step 3:

Convert the inequality constraint y2 − y1 ≥ 0 and y3 − y2 ≥ 0 into equality
constraint y2 − y1 = 0 and y3 − y2 = 0. We optimize P(T̃ PU(y)) subject to
y2 − y1 = 0 and y3 − y2 = 0 by the Lagrangian Method. Then the Lagrangian
function is

L(y1, y2, y3, y4,λ1,λ2) = P(T̃ PU(y))−λ1(y2 − y1)−λ2(y3 − y2).

We take the partial derivatives of L (y1, y2, y3, y4,λ1,λ2) with respect to y1, y2,
y3, y4, λ1 and λ2 and let all the partial derivatives equal to zero and solve y1, y2,
y3, y4. Then we get

y1 = y2 = y3 =

√√√√√√√√

2(K4D4 + 2K3D3 + 2K2D2)


2
x
[h1D1 + 2h2D2 + 2h3D3] + (h1A2

1 + 2h2A2
2 + 2h3A2

3)
− 1

x2 (h1D2
1 + 2h2D2

2 + 2h3D2
3)

+(h1 + 2h2 + 2h3)pm2(1− p)(1−m1)




,

y4 =

√√√√ 2K1D1

h4

h
2
x

D4 − D2
4

x2 + A2
4

i
+ h4pm2(1− p)(1−m1)

.

But yp1
> yp4

it does not satisfy the constraint < yp1
≤ yp2

≤ yp3
≤ yp4

,
therefore it is not a local optimum. Similarly, we can get the same result if we
select any other two inequality constraint to be equality constraint.

Step 4:

Convert the inequality constraint y2 − y1 ≥ 0, y3 − y2 ≥ 0 and y4 − y3 ≥ 0
into equality constraint y2 − y1 = 0, y2 − y2 = 0 and y4 − y3 = 0. We optimize
P(T̃ PU(y)) subject to y2− y1 = 0, y3− y2 = 0 and y4− y3 = 0 by the Lagrangian
Method. Then the Lagrangian function is

L(y1, y2, y3, y4,λ1,λ2,λ3)

= P(T̃ PU(y))−λ1(y2 − y1)−λ2(y3 − y2)−λ3(y4 − y3).

We take the partial derivatives of L(y1, y2, y3, y4,λ1,λ2,λ3) with respect to y1,
y2, y3, y4, λ1, λ2 and λ3 and let all the partial derivatives equal to zero y1, y2, y3



Fuzzy Economic Order Quantity for Items with Imperfect Quality and Inspection Errors 281

and y4. Then we get

y1 = y2 = y3 = y4

=

√√√√√√√√√√√

2(K4D4 + 2K3D3 + 2K2D2 + K1D1)


2
x
(h1D4 + 2h2D2 + 2h3D3 + h4D4)

− 1
x2 (h1D2

1 + 2h2D2
2 + 2h3D2

3 + h4D2
4)

× (h1A2
1 + 2h2A2

2 + 2h3A2
3 + h4A2

4)

+(1− p)(1−m1)pm2(h1 + 2h2 + 2h3 + h4)




. (5.6)

Because the above solution ey = (y1, y2, y3, y4). Satisfy all the inequality
constraints, the procedure terminate with ey as a local optimum solution to the
problem.

Since the above local optimum solution is the only one feasible solution of
formula (5.6). So it is an optimum solution of the inventory model with fuzzy
order size quantity according to extension of the Lagrangian Method.

Let y1 = y2 = y3 = y4 = y . Then the optimal fuzzy order size

y∗ =

√√√√√√√√√√√

2(K4D4 + 2K3D3 + 2K2D2 + K1D1)


2
x
(h1D4 + 2h2D2 + 2h3D3 + h4D4)

− 1
x2 (h1D2

1 + 2h2D2
2 + 2h3D2

3 + h4D2
4)

× (h1A2
1 + 2h2A2

2 + 2h3A2
3 + h4A2

4)

+(1− p)(1−m1)pm2(h1 + 2h2 + 2h3 + h4)




. (5.7)

6. Numerical Analysis

Consider a production system that replenishes the buyer’s orders instantly. This
system is not perfect, i.e. it produces some defective items. The inspection process
that screens out the defective items is also imperfect. The probability density
functions for the fraction of defective items and the inspection errors are mostly
taken from the history of a supplier and workers. In the case when these values
are not known. The fraction of defectives in a lot can be determined by using the
lot size or the time at which a process goes out of control in a cycle. Similarly, the
parameters for inspection errors can be determined by the methods suggested by
Cary et al. (1994) or Jaraiedo (1983). In the following analysis, most of the data
is taken from the S and J model.

D = 50, 000 units/year; C = $25/unit;

K = $100/cycle; S = $50/unit;

V = $20/unit; x = 1 unit/min;

d = $0.5/unit; h= $5/unit;

Ca = $500/unit; Cr = $100/unit;
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f (p) =

¨
25 0≤ p ≤ 0.05

0 otherwise;
f (m1) =

¨
25 0≤ m1 ≤ 0.05

0 otherwise;

f (m2) =

¨
25 0≤ m2 ≤ 0.05

0 otherwise.

Consider p = 0.02, m1 = 0.02, m2 = 0.02.
Assuming that the buyer operates for 8 hours per day for 365 days per year, the

annual screening rate would be, x = 1, 75, 200 units.
Let

eD = (47500, 50000, 50000, 52500); eK = (95, 100, 100, 105);
eh= (4.75, 5, 5, 5.25); eA= (0.6613, 0.6755, 0.6755, 0.6897);
eC = (23.75, 25, 25, 26.25); eS = (47.5, 50, 50, 52.5);
eV = (19, 20, 20, 21); ed = (0.475, 0.5, 0.5, 0.525);
eCa = (475, 500, 500, 525); eCr = (95, 100, 100, 105).

Substituting above value in (5.7) we obtain the optimal values of ey∗ = 1454
units. ÞTPU(y)? = 1095090/year.

7. Conclusion

In the fuzzy environment it may be possible and reasonable to discuss the
imperfect quality and inspection errors with trapezoidal fuzzy number for crisp
order quantity y , or for fuzzy order quantity ey . In addition, we find that the
optimal fuzzy order quantity ey∗ = (ey∗, ey∗, ey∗, ey∗) is the special type of trapezoidal
fuzzy number. It can also be considered as crisp real number and the optimal
solution of our proposed models, ey∗ and y∗ are real numbers. The optimal fuzzy
order quantity ey∗ or the optimal crisp order quantity y∗ will become

√√√√ 2KD

hpm2(1− p)(1−m1) + hD
�

2
x
− D

x2 +
A2

D

� .

It means that the optimal solution of our proposed models can be specified
to meet the classical inventory models. Hence these fuzzy inventory models are
executable and useful in the real world.
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