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1. Introduction

We consider the positive random variable H and the random variable V with values in the
interval (0,1). We also consider the random variable

J = HV .

If the random variables H, V are independent then the random variable J is said a random
contraction of the random variable H via the random variable V [7]. If the random variable
V follows the power distribution then the random variable J is said a power contraction.
Random contractions are generally recognized as strong analytical tools of probability theory
for investigating unimodality [11], infinite divisibility [13], stability [5], selfedecomposability
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[8] and other important properties of probability distributions. Moreover, random contractions
have practical applications in income distributions analysis [10], cindynics [9], continuous
discounting [4], reliability theory [3], inventory control [15], operations research [14], proactive
risk management [1], engineering [12], systemics [16], and informatics [2].

The present paper is mainly devoted to the characterization of the distribution of a Bernoulli
selection incorporating a random contraction and a stochastic integral.

2. Formulation of a Stochastic Model

The present section of the paper makes use of two positive random variables, a Bernoulli random
variable and a stochastic integral in order to formulate a stochastic model.

Let {X (t), t ≥ 0} be a stochastic process with stationary, independent, and positive increments.
We assume that E(X (t)) = µt and V (X (t)) =σ2t. We also assume {X (t), t ≥ 0} is continuous in
probability and that its sample paths are right continuous and have left limits. Moreover, we
assume that the increment L = X (t+1)− X (t) has characteristic function ϕL(u). The stochastic
integral

C =
∫ ∞

0
e−rtdX (t), r > 0

exists in the sense of convergence in probability and is finite almost surely. In addition, the
distribution function of C is continuous and

ϕC(u)= exp
{∫ ∞

0
logϕL

(
ue−rt) dt

}
is its characteristic function [6]. The characteristic function ϕC(u) is easily shown to be given by

ϕC(u)= exp
{

1
r

∫ u

0

logϕL(w)
w

dw
}

.

Let N be a Bernoulli random variable with probability generating function

PN(z)= q+ pz, 0< p < 1, q = 1− p,

S is a positive random variable with characteristic function ϕS(u) and T is a positive random
variable with distribution function FT(t). We consider the random variable Π= Se−rT and the
stochastic model

Y =
{
Π, N = 0,
C, N = 1.

The following sections of the paper are devoted to the theoretical investigation and the practical
interpretation of the formulated stochastic model.

3. Characteristic Function of a Stochastic Model

In general, an explicit evaluation of the characteristic function ϕY (u) of the stochastic model Y
is very difficult. The present section is devoted to the establishment of conditions for an explicit
evaluation of a particular case of ϕY (u).
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Theorem. We assume that the random variables N , C, S, T are independent and that
FT(t)= 1− e−λt, λ> 0. The characteristic function of the stochastic model Y has the form

ϕY (u)= pexp
(
1
r

∫ u

0

logϕL(w)
w

dw
)
+ q

[
ap
uap

∫ u

0
exp

(
1
r

∫ w

0

logϕL (θ)
θ

dθ
)

wap−1dw
]

with a =λ/r if and only if,

Y d=S, (1)

where d= denotes equality in distribution.

Proof. Only the sufficiency condition will be proved since the necessity condition can be proved
by reversing the argument. It is readily shown that the characteristic function of the stochastic
model Y has the form

ϕY (u)= pexp
(
1
r

∫ u

0

logϕL(w)
w

dw
)
+ q

a
ua

∫ u

0
ϕS(w)wa−1dw . (2)

If we use (1) in (2) we get the integral equation

ϕY (u)= pexp
(
1
r

∫ u

0

logϕL(w)
w

dw
)
+ q

a
ua

∫ u

0
ϕY (w)wa−1dw . (3)

If we multiply both sides of (3) by ua, u 6= 0, and then differentiating we get the differential
equation

ϕY (u)+ u
ap

dϕY (u)
du

= exp
(
1
r

∫ u

0

logϕL(w)
w

dw
)
+ u

ar
logϕL(u)

u
exp

(
1
r

∫ u

0

logϕY (w)
w

dw
)
. (4)

From (4) we get that
ap
uap

∫ u

0
ϕY (w)wap−1dw+ ap

uap

∫ u

0

w
ap

dϕY (w)
dw

wap−1dw

= ap
uap

∫ u

0
exp

(
1
r

∫ w

0

logϕL (θ)
θ

dθ
)

wap−1dw

+ ap
uap

∫ u

0

w logϕL(w)
arw

exp
(
1
r

∫ w

0

logϕL (θ)
θ

dθ
)

wap−1dw. (5)

Moreover, it is readily shown that
ap
uap

∫ u

0

w
ap

dϕY (w)
dw

wap−1dw =ϕY (u)− ap
uap

∫ u

0
ϕY (w)wap−1dw (6)

and that
ap
uap

∫ u

0

w logϕL(w)
arw

exp
(
1
r

∫ w

0

logϕL (θ)
θ

dθ
)

wap−1dw

= pexp
(
1
r

∫ u

0

logϕL(w)
w

dw
)
− ap2

uap

∫ u

0
exp

(
logϕL (θ)

θ
dθ

)
wap−1dw. (7)

If we use (6) and (7) in (5) we get the characteristic function

ϕY (u)= pexp
(
1
r

∫ u

0

logϕL(w)
w

dw
)
+ q

[
ap
uap

∫ u

0
exp

(
1
r

∫ w

0

logϕL (θ)
θ

dθ
)

wap−1dw
]

.

It is obvious that the above characteristic function belongs to a Bernoulli selection
incorporating the stochastic integral C and a power contraction of C.
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4. Application

The theory of finance is concerned with the determination of the value of the firm as a going
concern, the identification and analysis of factors with direct and indirect influence on this
value, and with the valuation of investment opportunities. The economic value of the firm as a
going concern is the present value of income that the firm will generate in the future. Assuming
that the income is given by the stochastic process {X (t), t ≥ 0} and since the corporate firm has
an indefinite life, its economic value can be approximated by the stochastic integral C where r
is the force of interest. Moreover, we assume that the random variable Sdenotes a cash flow
arising at the random time T , then the random variable Π denotes the present value of S as
viewed at time 0. Hence, the stochastic model formulated by the second section is suitable for
making selection between two present values.
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