Journal of Informatics and Mathematical Sciences

Volume 4 (2012), Number 2, pp. 249-254
(C) RGN Publications

Extensions of Steffensen's Inequality

W.T. Sulaiman

Abstract. Extension and new inequalities concerning Steffensen's inequality are presented.

1. Introduction

Steffensen's inequality reads as follows:
Theorem 1.1. Assume that two integrable functions $f(t)$ and $g(t)$ are defined on the interval (a, b), that $f(t)$ non-increasing and that $0 \leq g(t) \leq 1$ in (a, b). Then

$$
\begin{equation*}
\int_{a-\lambda}^{b} f(t) d t \leq \int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} f(t) d t \tag{1}
\end{equation*}
$$

where $\lambda=\int_{a}^{b} g(t) d t$.
Prcaric [6], however, through some modification, gives the following modification

Theorem 1.2. Let $f:[0,1] \rightarrow \Re$ be nonnegative and non-increasing function and let $g:[0,1] \rightarrow \Re$ be an integrable function such that $0 \leq g(t) \leq 1$ for all $t \in[0,1]$. If $p \geq 1$, then

$$
\begin{equation*}
\left(\int_{0}^{1} f(t) g(t) d t\right)^{p} \leq \int_{0}^{\lambda} f^{p}(t) d t \tag{2}
\end{equation*}
$$

where $\lambda=\left(\int_{0}^{1} g(t) d t\right)^{p}$.
A mapping $\phi: \Re \rightarrow \Re$ is said to be convex on $[a, b]$ if

$$
\begin{equation*}
\phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y), \quad x, y \in[a, b], 0 \leq t \leq 1 . \tag{3}
\end{equation*}
$$

If (3) reverses, then ϕ is called concave.

The aim of this paper is to give a generalization of Theorem 1.2, as well as other results including a reverse of Steffensen's inequality.

The following Lemma is needed
Lemma 1.3. The mapping $\phi(x)=x^{p}$ is convex for $p \geq 1$, and concave for $0 \leq p \leq 1$.
Proof. As

$$
\phi^{\prime \prime}(x)=p(p-1) x^{p-2} \geq 0
$$

then ϕ is convex. Also for $0<p \leq 1$, the concavity of ϕ follows from the inequality $\phi^{\prime \prime}(x) \leq 0$.

2. Results

The following gives a generalization of Theorem 1.2.
Theorem 2.1. Let $f, g, \phi \geq 0,0 \leq g \leq 1, p \geq 1, \phi\left(\lambda^{1 / p}\right) \leq \lambda$, where $\lambda=$ $\left(\int_{0}^{1} g(t) d t\right)^{p}, f$ is non-increasing. Then

$$
\begin{equation*}
\int_{0}^{\lambda} \phi \circ f(x) d x \geq \lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \int_{0}^{1} \phi \circ f(x) g(x) d x \tag{4}
\end{equation*}
$$

Proof. As $\phi \geq 0$ and f is non-increasing, then $\phi \circ f$ is non-increasing. Also,

$$
\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) g(x) \leq \lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \leq \lambda^{1-1 / p} \leq 1
$$

then

$$
\begin{aligned}
& \int_{0}^{\lambda} \phi \circ f(x) d x-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \int_{0}^{1} \phi \circ f(x) g(x) d x \\
& \quad=\int_{0}^{\lambda} \phi \circ f(x) d x-\left(\lambda^{-1 / p}\right)\left(\int_{0}^{\lambda}+\int_{\lambda}^{1}\right) \phi \circ f(x) g(x) d x \\
& \quad=\int_{0}^{\lambda} \phi \circ f(x)\left(1-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) g(x)\right) d x-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \int_{0}^{\lambda} \phi \circ f(x) g(x) d x \\
& \quad \geq \phi \circ f(\lambda)\left(\int_{0}^{\lambda}\left(1-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) g(x)\right) d x-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \int_{\lambda}^{1} g(x) d x\right) \\
& \quad=\phi \circ f(\lambda)\left(\lambda-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right)\left(\int_{0}^{\lambda}+\int_{\lambda}^{1}\right) g(x) d x\right) \\
& \quad=\phi \circ f(\lambda)\left(\lambda-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \int_{0}^{1} g(x) d x\right) \\
& \quad=\phi \circ f(\lambda)\left(\lambda-\phi\left(\lambda^{1 / p}\right)\right) \geq 0 .
\end{aligned}
$$

Remark 1. If we are putting $\phi(x)=x^{p}, p \geq 1$, we obtain the inequality (2) as follows

$$
\begin{aligned}
\int_{0}^{\lambda} f^{p}(x) d x & \geq\left(\int_{0}^{1} g(x) d x\right)^{p-1} \int_{0}^{1} f^{p}(x) g(x) d x \\
& \geq\left(\int_{0}^{1} f(x) g(x) d x\right)^{p}
\end{aligned}
$$

The following result is dealing with Steffensen's inequality for $p>0$.
Theorem 2.2. Let $f, g, \phi \geq 0,0 \leq g \leq 1, f$ is non-increasing. $\varphi(p)>0, \lambda^{\varphi(p)} g \leq 1$, $\int_{0}^{1} g(x) d x \leq \lambda^{1-\varphi(p)}$. Then

$$
\begin{equation*}
\int_{0}^{\lambda} \phi \circ f(x) d x \geq \lambda^{\varphi(p)} \int_{0}^{1} \phi \circ f(x) g(x) d x \tag{5}
\end{equation*}
$$

Proof. As $\phi \geq 0$ and f is non-increasing, then $\phi \circ f$ is non-increasing. Also,

$$
\begin{aligned}
\lambda^{\varphi(p)} g \leq 1 & \Rightarrow \quad \lambda^{\varphi(p)} \int_{0}^{1} g(x) d x \leq 1 \\
& \Rightarrow \quad \lambda \leq 1
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
& =\int_{0}^{\lambda} \phi \circ f(x) d x-\lambda^{\varphi / p}\left(\int_{0}^{\lambda}+\int_{\lambda}^{1}\right) \phi \circ f(x) g(x) d x \\
& =\int_{0}^{\lambda} \phi \circ f(x)\left(1-\lambda^{\varphi(p)} g(x)\right) d x-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \int_{\lambda}^{1} \phi \circ f(x) g(x) d x \\
& \geq \phi \circ f(\lambda)\left(\int_{0}^{\lambda}\left(1-\lambda^{\varphi(p)} g(x)\right) d x-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \int_{\lambda}^{1} g(x) d x\right) \\
& =\phi \circ f(\lambda)\left(\lambda-\lambda^{\varphi(p)}\left(\int_{0}^{\lambda}+\int_{\lambda}^{1}\right) g(x) d x\right) \\
& =\phi \circ f(\lambda)\left(\lambda-\lambda^{\varphi / p} \int_{0}^{1} g(x) d x\right) \\
& =\phi \circ f(\lambda)(\lambda-\lambda) \geq 0 .
\end{aligned}
$$

Corollary 2.3. Let $f, g, \phi \geq 0, \lambda^{1 / p-1} g \leq 1, f$ is non-increasing, $p>0$, where $\lambda=\left(\int_{0}^{1} g(t) d t\right)^{\frac{p}{2 p-1}}$. Then

$$
\begin{equation*}
\int_{0}^{\lambda} \phi \circ f(x) d x \geq \lambda^{1 / p-1} \int_{0}^{1} \phi \circ f(x) g(x) d x \tag{6}
\end{equation*}
$$

Proof. The proof follows from Theorem 2.2, by putting $\varphi(p)=1 / p-1,0<p<1$.

The following gives another extension of Theorem 2.1
Theorem 2.4. Let $f, g, h, \phi \geq 0,0 \leq g \leq 1, f$ is non-increasing, $p \geq 1$, $\phi\left(\lambda^{1 / p}\right) \leq \int_{0}^{\lambda} h(x) d x, \lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \leq h$, where $\lambda=\left(\int_{0}^{1} g(t) d t\right)^{p}$. Then

$$
\begin{equation*}
\int_{0}^{\lambda} \phi \circ f(x) h(x) d x-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \int_{0}^{1} \phi \circ f(x) g(x) d x \tag{7}
\end{equation*}
$$

Proof. As before, $\phi \circ f$ is non-increasing. Therefore

$$
\begin{aligned}
& \int_{0}^{\lambda} \phi \circ f(x) h(x) d x-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \int_{0}^{1} \phi \circ f(x) g(x) d x \\
&= \int_{0}^{\lambda} \phi \circ f(x) h(x) d x-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right)\left(\int_{0}^{\lambda}+\int_{\lambda}^{1}\right) \phi \circ f(x) g(x) d x \\
&= \int_{0}^{\lambda} \phi \circ f(x)\left(h(x)-\lambda^{-1(p)} \phi\left(\lambda^{1 / p}\right) g(x)\right) d x \\
& \quad-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \int_{\lambda}^{1} \phi \circ f(x) g(x) d x \\
&= \phi \circ f(\lambda)\left(\int_{0}^{\lambda}\left(h(x)-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) g(x)\right) d x-\lambda^{-1 / p} \phi\left(\lambda^{1 / p}\right) \int_{\lambda}^{1} g(x) d x\right) \\
&= \phi \circ f(\lambda)\left(\int_{0}^{\lambda} h(x) d x-\lambda^{-1(p)} \phi\left(\lambda^{1 / p}\right)\left(\int_{0}^{\lambda}+\int_{\lambda}^{1}\right) g(x) d x\right) \\
&= \phi \circ f(\lambda)\left(\int_{0}^{\lambda} h(x) d x-\phi\left(\lambda^{1 / p}\right)\right) \geq 0 .
\end{aligned}
$$

The following gives a reverse inequality
Theorem 2.5. Let $f, g, \phi \geq 0, \phi$ is concave with $\phi(0)=0, f$ is non-decreasing, $0 \leq g \leq 1, p \geq 1$ and $\lambda=\left(\int_{0}^{1} g(t) d t\right)^{p}$. Then

$$
\begin{equation*}
\int_{0}^{\lambda} \phi \circ f(x) d x \leq \phi\left(\lambda^{1-1 / p} \int_{0}^{1} f(x) g(x) d x\right) \tag{8}
\end{equation*}
$$

Proof.

$$
\int_{0}^{\lambda} \phi \circ f(x) d x-\phi\left(\lambda^{1-1 / p} \int_{0}^{1} f(X) g(x) d x\right)
$$

$$
\begin{aligned}
& =\int_{0}^{\lambda} \phi \circ f(x) d x-\phi\left(\lambda \frac{1}{\lambda^{1 / p}} \int_{0}^{1} f(x) g(x) d x\right) \\
& \leq \int_{0}^{\lambda} \phi \circ f(x) d x-\lambda \phi\left(\frac{1}{\lambda^{1 / p}} \int_{0}^{1} f(x) g(x) d x\right) \\
& \leq \int_{0}^{\lambda} \phi \circ f(x) d x-\lambda^{1-1 / p}\left(\int_{0}^{f} \phi \circ f(x) g(x) d x\right) \\
& =\int_{0}^{\lambda} \phi \circ f(x) d x-\lambda^{1-1 / p}\left(\int_{0}^{\lambda}+\int_{\lambda}^{1}\right) \phi \circ f(x) g(X) d x \\
& =\int_{0}^{\lambda} \phi \circ f(x)\left(1-\lambda^{1-1 / p} g(x)\right) d x-\lambda^{1-1 / p} \int_{\lambda}^{1} \phi \circ f(x) g(x) d x \\
& \leq \phi \circ f(\lambda)\left(\int_{0}^{\lambda}\left(1-\lambda^{1-1 / p} g(x)\right) d x-\lambda^{1-1 / p} \int_{\lambda}^{1} g(x) d x\right) \\
& =\phi \circ f(\lambda)\left(\lambda-\lambda^{1-1 / p}\left(\int_{0}^{\lambda}+\int_{\lambda}^{1}\right) g(x) d x\right) \\
& =\phi \circ f(\lambda)\left(\lambda-\lambda^{1-1 / p} \int_{0}^{1} g(x) d x\right) \\
& =\phi \circ f(\lambda)(\lambda-\lambda)=0 .
\end{aligned}
$$

Corollary 2.6. Let $f, g \geq 0, f$ is non-decreasing, $0 \leq g \leq 1, p \geq 1,0<q<1$, and $\lambda=\left(\int_{0}^{1} g(t) d t\right)^{p}$. Then

$$
\begin{equation*}
\int_{0}^{\lambda} f^{q}(x) d x \leq \lambda^{q-q / p}\left(\int_{0}^{1} f(x) g(x) d x\right)^{q} \tag{9}
\end{equation*}
$$

Proof. The proof follows from Theorem 2.5 by pitting $\phi(x)=x^{q}, 0<q<1$.

References

[1] R. Bellman, On inequalities with alternating signs, Proc. Amer. Math. Soc. 10 (1950), 807-809.
[2] E.F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin, 1965.
[3] J. Berch, A generalization of Steffensen's inequality, J. Math. Anal. Appl. 41 (1973), 187-191.
[4] E.K. Godunova and V.I. Levin, A general class of inequalities concerning Steffensen's inequality, Mat. Zametki 3 (1968), 339-344 (Russian).
[5] D.S. Mitrinovic (in cooperation with P.M. Vasic), Analytic Inequalities, Springer-Verlag, Berlin — Heidelber — New York, 1970.
[6] J.E. Pecaric, On the Bellman generalization of Steffencens's inequality, J. Math. Anal. Appl. 88 (1982), 505-507.
[7] J.F. Steffensen, On certain inequalities between mean value and their application to actuarial problems, Skandinavisk Akturietidsrift (1918), 82-97.
[8] W.T. Sulaiman, Some generalizations of Steffensen's inequality, Australian Journal of Mathematical Analysis 2(1) (2005), 1-88.
W.T. Sulaiman, Department of Computer Engineering, College of Engineering, University of Mosul, Iraq.
E-mail: waadsulaiman@hotmail.com

Received April 13, 2011
Accepted May 26, 2012

