Journal of Informatics and Mathematical Sciences Volume 4 (2012), Number 2, pp. 241–248 © RGN Publications

On the Absolute Summability Factors of Infinite Series involving Quasi-f-power Increasing Sequence

W.T. Sulaiman

Abstract. In this note we improve a result concerning absolute summability factor of an infinite series via quasi β -power increasing sequence achieved by Sevli and Leindler [1].

1. Introduction

A positive sequence (b_n) is said to be almost increasing if exist a positive increasing sequence (c_n) and two positive constants A and B such that $Ac_n \leq b_n \leq Bc_n$.

A positive sequence $a = (a_n)$ is said to be quasi β -power increasing if there exists a constant $K = k(\beta, a) \ge 1$ such that

$$Kn^{\beta}a_n \ge m^{\beta}a_m \tag{1.0}$$

holds for all $n \ge m$. If (1.0) stays with $\beta = 0$ then *a* is called a quasi increasing sequence. It should be noted that every almost increasing sequence is a quasi β -power increasing sequence for any nonnegative β , but the converse need not be true as can be seen by taking $a_n = n^{-\beta}$.

A positive sequence $\alpha = (\alpha_n)$ is said to be a quasi-f-power increasing sequence, $f = (f_n)$, if there exits a constant $K = K(\alpha, f)$ such that

$$Kf_n\alpha_n \ge f_m\alpha_m$$

holds for $n \ge m \ge 1$ (see [3]). Clearly if α is quasi-f-power increasing sequence, then αf is quasi increasing sequence.

Let *T* be a lower triangular matrix, (s_n) a sequence, and

$$T_n := \sum_{\nu=0}^n t_{n\nu} s_{\nu}.$$
 (1.1)

²⁰¹⁰ Mathematics Subject Classification. 40A05, 40D15, 40F05.

Key words and phrases. Infinite series; Absolute summability; Summability factor.

A series $\sum a_n$ is said to be summable $|T|_k$, $k \ge 1$ if

$$\sum_{n=1}^{\infty} n^{k-1} |\Delta T_{n-1}|^k < \infty.$$
(1.2)

Given any lower triangular matrix *T* one can associate the matrices \overline{T} and \widehat{T} , with entries defined by

$$\bar{t}_{n\nu} = \sum_{t=\nu}^{n} t_{ni}, \quad n, i = 0, 1, 2..., \ \hat{t}_{n\nu} = \bar{t}_{n\nu} - \bar{t}_{n-1,\nu}$$

respectively. With $s_n = \sum_{i=0}^n a_i \lambda_i$,

$$t_n = \sum_{\nu=0}^n t_{n\nu} s_{\nu} = \sum_{\nu=0}^n t_{n\nu} \sum_{i=0}^\nu a_i \lambda_i = \sum_{i=0}^n a_i \lambda_i \sum_{\nu=i}^n t_{n\nu} = \sum_{i=0}^n \bar{t}_{ni} a_i \lambda_i,$$
(1.3)

$$Y_n := t_n - t_{n-1} = \sum_{t=0}^n \bar{t}_{ni} a_i \lambda_i - \sum_{i=0}^{n-1} \bar{t}_{n-1,i} a_i \lambda_i = \sum_{i=0}^n \widehat{t}_{ni} a_i \lambda_i, \quad \text{as } \bar{t}_{n-1,n} = 0.$$
(1.4)

We call *T* a triangle if *T* is lower triangular and $t_{nn} \neq 0$ for all *n*. We designate $A = (a_{nv})$ to be of class Ω if the following holds

- (i) is lower triangular
- (ii) $a_{nv} \ge 0, n, v = 0, 1, \dots$
- (iii) $a_{n-1,\nu} \ge a_{n\nu}$, for $n \ge \nu + 1$
- (iv) $a_{n0} = 1, n = 0, 1, \dots$

By t_n we denote the *n*th (*C*, 1) mean of the sequence (na_n) , that is $t_n = \frac{1}{n+1} \sum_{\nu=1}^n \nu a_{\nu}$. Very recently, Selvi and Leindler [1] proved the following result

Theorem 1.1. Let $A \in \Omega$ satisfying

$$na_{nn} = O(1), \quad n \to \infty$$
 (1.5)

and let (λ_n) be a sequence of real numbers satisfying

$$\sum_{n=1}^{m} \lambda_n = o(m), \quad m \to \infty$$
(1.6)

and

$$\sum_{n=1}^{m} |\Delta \lambda_n| = o(m), \quad m \to \infty.$$
(1.7)

If (X_n) is a quasi-f-increasing sequence and the conditions

$$\sum_{n=1}^{m} \frac{1}{n} |t_n|^k = O(X_m), \quad m \to \infty,$$
(1.8)

On the Absolute Summability Factors of Infinite Series involving Quasi-f-power Increasing Sequence 243

$$\sum_{n=1}^{\infty} n X_n(\beta,\mu) |\Delta| \Delta \lambda_n| | < \infty,$$
(1.9)

are satisfied then the series $\sum a_n \lambda_n$ is summable $|A|_k \ge 1$, where $(f_n) = (n^{\beta} \log^{\mu} n)$, $\mu \ge 0, \ 0 \le \beta < 1$ and $X_n(\beta, \mu) = \max\{n^{\beta} (\log n)^{\mu}, \log n\}$.

2. Main Result

The purpose of this paper is to give the following

Theorem 2.1. Let $A \in \Omega$, Let (X_n) be a quasi-f-power increasing sequence and let (λ_n) be sequence of real numbers all are satisfying (1.5) and

$$\lambda_n = o(1), \quad n \to \infty, \tag{2.1}$$

$$|\lambda_n|X_n = O(1), \quad n \to \infty,$$
 (2.2)

$$\sum_{n=1}^{\infty} nX_n |\Delta| \Delta \lambda_n || < \infty, \tag{2.3}$$

$$\sum_{n=1}^{m} \frac{|t_n|^k}{nX_n^{K-1}} = O(X_m),$$
(2.4)

$$\sum_{\nu=1}^{n-1} \widehat{a}_{n,\nu+1} a_{\nu\nu} = O(a_{nn}), \quad n \to \infty,$$
(2.5)

then the series $\sum a_n \lambda_n$ is summable $|A|_k$, $k \ge 1$, where $f = (f_n)$, $f_n = n^{\beta} \left(\prod_{\mu=1}^N \log^{\mu} n\right)^{P_{\mu}}$, $0 \le \beta < 1, 1 \le N < \infty, P_{\mu} > 0$, and $\log^{\mu} n = \log(\log^{\mu-1} n)$.

The goodness and advantage of Theorem 2.1 follows from the following remark.

Remark. (1) Although the condition (2.5) is added (in comparing with Theorem 1.1) but this condition is trivial. As an example if we are putting $a_{n\nu} = p_{\nu}/P_n$ (in order to have the $|\bar{N}, p_n|_k$ summability), (2.5) is obvious by the following

$$\sum_{\nu=1}^{n-1} \widehat{a}_{n,\nu+1} a_{\nu\nu} = \sum_{\nu=1}^{n-1} \frac{p_n P_\nu}{P_n P_{n-1}} \frac{p_\nu}{P_\nu} = \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^{n-1} P_\nu = \frac{p_n}{P_n} = a_{nn} = O(a_{nn}).$$

(2) Let us define the following two groups of conditions

group $I = \{(1.6), (1.7), (1.9)\},\$

group
$$J = \{(2.1), (2.2), (2.3)\}$$
.

It is clear that (see [1]) $I \Rightarrow J$, but not the converse. Therefore the conditions of Theorem 3.1 are weaker than those of Theorem 1.1.

- (3) The condition (1.8) in using impose us to loose powers of estimation. For example in the proof of Theorem 1.1, through the estimations of I₁ and I₂, the power λ_n|^{k-1} has been lost through the estimation when it has been substituted by (|λ_n|^{k-1} = O(1)), while we have not this case on using (2.4).
- (4) The sequence (X_n) used in Theorem 2.1 is more general and in some sense make some condition is weaker than (X_n) defined in Theorem 1.1.

3. Lemmas

Lemma 3.1. The conditions (1.6), (1.7) and (1.9) implies $\lambda_n = O(1)$, as $n \to \infty$. For the proof see [1].

Lemma 3.2. Let $A \in \Omega$. Then

$$\sum_{\nu=1}^{n-1} |\Delta_n a_{n-1m,\nu}| \le a_{nn},$$
$$\sum_{n=\nu+1}^{m+1} |\Delta_n a_{n-1m,\nu}| \le a_{\nu\nu}$$

Lemma 3.3. Let $A \in \Omega$. Then

$$\widehat{a}_{n+1,\nu} \leq a_{nn} \qquad \text{for } n \geq \nu + 1,$$
$$\sum_{n=\nu+1}^{m+1} \widehat{a}_{n+1,\nu} \leq 1, \quad \nu = 0, 1, \dots.$$

Lemma 3.4. Let (X_n) be as defined in Theorem 2.1. Then conditions (2.1) and (2.3) *implies*

$$nX_n|\Delta\lambda_n| = O(1), \quad \text{as } n \to \infty,$$
 (3.1)

$$\sum_{n=1}^{\infty} X |\Delta \lambda_n| < \infty.$$
(3.2)

Proof. Let f_n be as defined in Theorem 2.1. Then by (2.1), $\Delta |\Delta \lambda_n| \rightarrow 0$, and hence

$$\begin{split} nX_{n}|\Delta\lambda_{n}| &= nX_{n} \left| \sum_{\nu=n}^{\infty} \Delta|\Delta\lambda_{\nu}| \right| \\ &\leq nX_{n} \sum_{\nu=n}^{\infty} |\Delta|\Delta\lambda_{\nu}| = O(1)nf_{n}^{-1}f_{n}X_{n} \sum_{\nu=n}^{\infty} |\Delta|\Delta\lambda_{\nu}| \\ &= O(1)nf_{n}^{-1} \sum_{\nu=n}^{\infty} f_{\nu}X_{\nu}|\Delta|\Delta\lambda_{\nu}| \\ &= O(1) \sum_{\nu=n}^{\infty} \nu f_{\nu}^{-1}f_{\nu}X_{\nu}|\Delta|\Delta\lambda_{\nu}| \end{split}$$

$$= O(1) \sum_{\nu=n}^{\infty} \nu X_{\nu} |\Delta| \Delta \lambda_{\nu} ||$$

$$= O(1),$$

$$\sum_{n=1}^{\infty} X_{n} |\Delta \lambda_{n}| \le \sum_{n=1}^{\infty} X_{n} \sum_{\nu=n}^{\infty} |\Delta \lambda_{\nu}|| = \sum_{n=1}^{\infty} f_{n}^{-1} f_{n} X_{n} \sum_{\nu=n}^{\infty} |\Delta| \Delta \lambda_{\nu} ||$$

$$= O(1) \sum_{n=1}^{\infty} f_{n}^{-1} \sum_{\nu=n}^{\infty} f_{\nu} X_{\nu} |\Delta| \Delta \lambda_{\nu} ||$$

$$= O(1) \sum_{\nu=1}^{\infty} f_{\nu} X_{\nu} |\Delta| \Delta \lambda_{\nu} || \sum_{n=1}^{\nu} f_{n}^{-1}.$$

Now, as

$$\sum_{n=1}^{\nu} f_n^{-1} = \sum_{n=1}^{\nu} n^{\beta+\epsilon} f_n^{-1} n^{-\beta-\epsilon}, \quad 0 < \beta+\epsilon < 1$$
$$\leq \nu^{\beta+\epsilon} f_{\nu}^{-1} \sum_{n=1}^{\nu} n^{-\beta-\epsilon} = O(1)\nu^{\beta+\epsilon} f_{\nu}^{-1} \int_0^{\nu} x^{-\beta-\epsilon} dx = O(1)\nu f_{\nu}^{-1}.$$

Then, we have

$$\sum_{n=1}^{\infty} X_n |\Delta \lambda_n| = O(1) \sum_{n=1}^{\infty} n X_n |\Delta| \Delta \lambda_n || < \infty.$$

4. Proof of Theorem 1.2

Let y_n denotes the *n*th term of the *A*-transform of the series $\sum a_n \lambda_n$. Then by (1.4), we have, for $n \ge 1$

$$\begin{split} Y_{n} &= y_{n} - y_{n-1} \\ &= \sum_{\nu=0}^{n} \widehat{a}_{n\nu} a_{\nu} \lambda_{\nu} \\ &= \sum_{\nu=1}^{n-1} \Delta \left(\frac{\widehat{a}_{n\nu} \lambda_{\nu}}{\nu} \right) \sum_{r=1}^{\nu} r a_{r} + \frac{a_{nn} \lambda_{n}}{n} \sum_{\nu=1}^{n} \nu a_{\nu} \\ &= \frac{(n+1)a_{nn} t_{n} \lambda_{n}}{n} - \sum_{\nu=1}^{n-1} \Delta_{n} a_{n-1,\nu} \lambda_{\nu} t_{\nu} \frac{\nu+1}{\nu} + \sum_{\nu=1}^{n-1} \widehat{a}_{n,\nu+1} \lambda_{\nu} t_{\nu} \frac{1}{\nu} + \sum_{\nu=1}^{n-1} \widehat{a}_{n,\nu+1} \Delta \lambda_{\nu} t_{\nu} \\ &= Y_{n1} + Y_{n2} + Y_{n3} + Y_{4}. \end{split}$$

To complete the proof, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} n^{k-1} |Y_{n\nu}|^k < \infty, \quad \nu = 1, 2, 3, 4.$$

Applying Holder's inequality,

$$\begin{split} \sum_{n=1}^{m+1} n^{k-1} |Y_{n1}|^{k} &= \sum_{n=1}^{m+1} n^{k-1} \left| \frac{(n+1)a_{nn}t_{n}\lambda_{n}}{n} \right|^{k} \\ &= O(1) \sum_{n=1}^{m+1} (na_{n}n)^{k-1} \frac{|t_{n}|^{k}\lambda_{n}|(|\lambda_{n}|X_{n})^{k-1}}{nX_{n}^{k-1}} \\ &= O(1) \sum_{\nu=1}^{m} \frac{|\lambda_{\nu}||t_{\nu}|^{k}}{\nu X_{\nu}^{k-1}} \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta |\lambda_{\nu}| \sum_{r=0}^{\nu} \frac{|t_{r}|^{k}}{rX_{r}^{k-1}} + O(1)|\lambda_{m}| \sum_{\nu=1}^{m} \frac{|t_{\nu}|^{k}}{\nu X_{\nu}^{k-1}} \\ &= O(1) \sum_{\nu=1}^{m} |\Delta \lambda_{\nu}| X_{\nu} + O(1)|\lambda_{m}|X_{m} \\ &= O(1), \\ \\ \sum_{\nu=1}^{m+1} n^{k-1} |Y_{n2}|^{k} &= \sum_{n=1}^{m+1} n^{k-1} \left| \sum_{\nu=1}^{n-1} \Delta_{n}a_{n-1,\nu}\lambda_{\nu} \frac{\nu+1}{\nu} \right|^{k} \\ &= O(1) \sum_{n=1}^{m+1} n^{k-1} \left| \sum_{\nu=1}^{n-1} \Delta_{n}a_{n-1,\nu}| |\lambda_{\nu}||t_{\nu}| \right|^{k} \\ &= O(1) \sum_{n=1}^{m+1} n^{k-1} \left| \sum_{\nu=1}^{n-1} |\Delta_{n}a_{n-1,\nu}| |\lambda_{\nu}|^{k}|t_{\nu}|^{k} \left(\sum_{\nu=1}^{n-1} \Delta_{n}a_{n-1,\nu}| \right)^{k-1} \\ &= O(1) \sum_{n=1}^{m+1} n^{k-1} \sum_{\nu=1}^{n-1} |\Delta_{n}a_{n-1,\nu}| |\lambda_{\nu}|^{k}|t_{\nu}|^{k} \\ &= O(1) \sum_{\nu=1}^{m+1} |\lambda_{\nu}|^{k}|t_{\nu}|^{k} \sum_{n=\nu+1}^{n-1} |\Delta_{n}a_{n-1,\nu}| \\ &= O(1) \sum_{\nu=1}^{m} |\lambda_{\nu}|^{k}|t_{\nu}|^{k} \sum_{n=\nu+1}^{m+1} |\Delta_{n}a_{n-1,\nu}| \\ &= O(1) \sum_{\nu=1}^{m} |\lambda_{\nu}|^{k}|t_{\nu}|^{k} \\ &= O(1) \sum_{\nu=1}^{m}$$

= O(1), as in the case of Y_{n1} .

$$\begin{split} \sum_{n=1}^{m+1} n^{k-1} |Y_{n3}|^k &= \sum_{n=1}^{m+1} n^{k-1} \left| \sum_{\nu=1}^{n-1} \widehat{a}_{n,\nu+1} \lambda_{\nu} t_{\nu} \frac{1}{\nu} \right|^k \\ &= O(1) \sum_{n=1}^{m+1} n^{k-1} \left(\sum_{\nu=1}^{n-1} \frac{\widehat{a}_{n,\nu+1} |\lambda_{\nu}| |t_{\nu}|}{\nu} \right)^k \\ &= O(1) \sum_{n=1}^{m+1} n^{k+1} \sum_{\nu=1}^{n-1} a_{\nu\nu} |\widehat{a}_{n,\nu+1}| |\lambda_{\nu}|^k |t_{\nu}|^k \left(\sum_{\nu=1}^{n-1} a_{\nu\nu} \widehat{a}_{n,\nu+1} \right)^{k-1} \\ &= O(1) \sum_{n=1}^{m+1} (na_{nn})^{k-1} \sum_{\nu=1}^{n-1} a_{\nu\nu} \widehat{a}_{n,\nu+1} |\lambda_{\nu}|^k |t_{\nu}|^k \\ &= O(1) \sum_{\nu=1}^{m} \frac{|\lambda_{\nu}| |t_{\nu}|^K}{\nu X_{\nu}^{k-1}} \sum_{n=\nu+1}^{m+1} \widehat{a}_{n,\nu+1} = O(1) \sum_{\nu=1}^{m} \frac{|\lambda_{\nu}| |t_{\nu}|^k}{\nu x_{\nu}^{k-1}} \end{split}$$

= O(1), as in the case of Y_{n1} .

$$\begin{split} \sum_{n=1}^{m+1} n^{k-1} |Y_{n4}|^k &= \sum_{n=1}^{m+1} n^{k-1} \left| \sum_{\nu=1}^{n-1} \widehat{a}_{n,\nu+1} \Delta \lambda_{\nu} t_{\nu} \right|^k \\ &= O(1) \sum_{n=1}^{m+1} n^{k-1} \left(\sum_{\nu=1}^{n-1} \widehat{a}_{n,\nu+1} |\Delta \lambda_{\nu}| |t_{\nu}| \right)^k \\ &= O(1) \sum_{n=1}^{m+1} n^{k-1} \sum_{\nu=1}^{n-1} (\widehat{a}_{n,\nu+1})^k \frac{|\Delta \lambda_{\nu}|}{X_{\nu}^{k-1}} |t_{\nu}|^k \left(\sum_{\nu=1}^{n-1} X_{\nu} |\Delta \lambda_{\nu}| \right)^{k-1} \\ &= O(1) \sum_{n=1}^{m+1} (na_{nn})^{k-1} \sum_{\nu=1}^{n-1} \widehat{a}_{n,\nu+1} \frac{|\Delta \lambda_{\nu}|}{X_{\nu}^{k-1}} |t_{\nu}|^k \\ &= O(1) \sum_{\nu=1}^{m} \frac{|\Delta \lambda_{\nu}|}{X_{\nu}^{k-1}} |t_{\nu}|^k \sum_{n=\nu+1}^{m+1} \widehat{a}_{n,\nu+1} \\ &= O(1) \sum_{\nu=1}^{m} \frac{\nu |\Delta \lambda_{\nu}|}{\nu X_{\nu}^{k-1}} |t_{\nu}|^k \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta (\nu |\Delta \lambda_{\nu}|) \sum_{\nu=1}^{\nu} \frac{|t_{\nu}|^k}{r X_{\nu}^{k-1}} + O(1)m |\Delta \lambda_{m}| X_{m} \\ &= O(1) \sum_{\nu=1}^{m-1} |\Delta \lambda_{\nu}| X_{\nu} + O(1) \sum_{\nu=1}^{m} \nu |\Delta |\Delta \lambda_{\nu}| |X_{\nu} + O(1)m |\Delta \lambda_{m}| X_{m} \\ &= O(1). \end{split}$$

References

- H. Sevli and L. Leindler, On the absolute summability factors of infinite series involving quasi-power-increasing sequences, *Computer and Mathematics with Applications* 57 (2009), 702–709.
- [2] B.E. Rhoades, Inclusion theorems for absolute matrix summability methods, J. Math. Anal. Appl. 238 (1999), 82–90.
- [3] W.T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl. **322** (2006), 1224–1230.

W.T. Sulaiman, Department of Computer Engineering, College of Engineering, University of Mosul, Iraq. E-mail: waadsulaiman@hotmail.com

Received March 8, 2011 Accepted May 5, 2012