(C) RGN Publications

On the Absolute Summability Factors of Infinite Series involving Quasi-f-power Increasing Sequence

W.T. Sulaiman

Abstract

In this note we improve a result concerning absolute summability factor of an infinite series via quasi β-power increasing sequence achieved by Sevli and Leindler [1].

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if exist a positive increasing sequence (c_{n}) and two positive constants A and B such that $A c_{n} \leq b_{n} \leq$ $B c_{n}$.

A positive sequence $a=\left(a_{n}\right)$ is said to be quasi β-power increasing if there exists a constant $K=k(\beta, a) \geq 1$ such that

$$
\begin{equation*}
K n^{\beta} a_{n} \geq m^{\beta} a_{m} \tag{1.0}
\end{equation*}
$$

holds for all $n \geq m$. If (1.0) stays with $\beta=0$ then a is called a quasi increasing sequence. It should be noted that every almost increasing sequence is a quasi β-power increasing sequence for any nonnegative β, but the converse need not be true as can be seen by taking $a_{n}=n^{-\beta}$.

A positive sequence $\alpha=\left(\alpha_{n}\right)$ is said to be a quasi-f-power increasing sequence, $f=\left(f_{n}\right)$, if there exits a constant $K=K(\alpha, f)$ such that

$$
K f_{n} \alpha_{n} \geq f_{m} \alpha_{m}
$$

holds for $n \geq m \geq 1$ (see [3]). Clearly if α is quasi-f-power increasing sequence, then αf is quasi increasing sequence.

Let T be a lower triangular matrix, $\left(s_{n}\right)$ a sequence, and

$$
\begin{equation*}
T_{n}:=\sum_{v=0}^{n} t_{n v} s_{v} \tag{1.1}
\end{equation*}
$$

A series $\sum a_{n}$ is said to be summable $|T|_{k}, k \geq 1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\Delta T_{n-1}\right|^{k}<\infty \tag{1.2}
\end{equation*}
$$

Given any lower triangular matrix T one can associate the matrices \bar{T} and \widehat{T}, with entries defined by

$$
\bar{t}_{n v}=\sum_{t=v}^{n} t_{n i}, \quad n, i=0,1,2 \ldots, \widehat{t}_{n v}=\bar{t}_{n v}-\bar{t}_{n-1, v}
$$

respectively. With $s_{n}=\sum_{i=0}^{n} a_{i} \lambda_{i}$,

$$
\begin{align*}
& t_{n}=\sum_{v=0}^{n} t_{n v} s_{v}=\sum_{v=0}^{n} t_{n v} \sum_{i=0}^{v} a_{i} \lambda_{i}=\sum_{i=0}^{n} a_{i} \lambda_{i} \sum_{v=i}^{n} t_{n v}=\sum_{i=0}^{n} \bar{t}_{n i} a_{i} \lambda_{i}, \tag{1.3}\\
& Y_{n}:=t_{n}-t_{n-1}=\sum_{t=0}^{n} \bar{t}_{n i} a_{i} \lambda_{i}-\sum_{i=0}^{n-1} \bar{t}_{n-1, i} a_{i} \lambda_{i}=\sum_{i=0}^{n} \widehat{t}_{n i} a_{i} \lambda_{i}, \quad \text { as } \bar{t}_{n-1, n}=0 . \tag{1.4}
\end{align*}
$$

We call T a triangle if T is lower triangular and $t_{n n} \neq 0$ for all n. We designate $A=\left(a_{n v}\right)$ to be of class Ω if the following holds
(i) is lower triangular
(ii) $a_{n v} \geq 0, n, v=0,1, \ldots$
(iii) $a_{n-1, v} \geq a_{n v}$, for $n \geq v+1$
(iv) $a_{n 0}=1, n=0,1, \ldots$

By t_{n} we denote the nth $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$, that is $t_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v}$.
Very recently, Selvi and Leindler [1] proved the following result
Theorem 1.1. Let $A \in \Omega$ satisfying

$$
\begin{equation*}
n a_{n n}=O(1), \quad n \rightarrow \infty \tag{1.5}
\end{equation*}
$$

and let $\left(\lambda_{n}\right)$ be a sequence of real numbers satisfying

$$
\begin{equation*}
\sum_{n=1}^{m} \lambda_{n}=o(m), \quad m \rightarrow \infty \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m}\left|\Delta \lambda_{n}\right|=o(m), \quad m \rightarrow \infty \tag{1.7}
\end{equation*}
$$

If $\left(X_{n}\right)$ is a quasi-f-increasing sequence and the conditions

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right), \quad m \rightarrow \infty \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} n X_{n}(\beta, \mu)|\Delta| \Delta \lambda_{n}| |<\infty \tag{1.9}
\end{equation*}
$$

are satisfied then the series $\sum a_{n} \lambda_{n}$ is summable $|A|_{k} \geq 1$, where $\left(f_{n}\right)=\left(n^{\beta} \log ^{\mu} n\right)$, $\mu \geq 0,0 \leq \beta<1$ and $X_{n}(\beta, \mu)=\max \left\{n^{\beta}(\log n)^{\mu}, \log n\right\}$.

2. Main Result

The purpose of this paper is to give the following
Theorem 2.1. Let $A \in \Omega$, Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence and let $\left(\lambda_{n}\right)$ be sequence of real numbers all are satisfying (1.5) and

$$
\begin{align*}
& \lambda_{n}=o(1), \quad n \rightarrow \infty \tag{2.1}\\
& \left|\lambda_{n}\right| X_{n}=O(1), \quad n \rightarrow \infty \tag{2.2}\\
& \sum_{n=1}^{\infty} n X_{n}|\Delta| \Delta \lambda_{n}| |<\infty \tag{2.3}\\
& \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{K-1}}=O\left(X_{m}\right) \tag{2.4}\\
& \sum_{v=1}^{n-1} \widehat{a}_{n, v+1} a_{v v}=O\left(a_{n n}\right), \quad n \rightarrow \infty \tag{2.5}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|A|_{k}, k \geq 1$, where $f=\left(f_{n}\right), f_{n}=n^{\beta}\left(\prod_{\mu=1}^{N} \log ^{\mu} n\right)^{P \mu}$, $0 \leq \beta<1,1 \leq N<\infty, P_{\mu}>0$, and $\log ^{\mu} n=\log \left(\log ^{\mu-1} n\right)$.

The goodness and advantage of Theorem 2.1 follows from the following remark.
Remark. (1) Although the condition (2.5) is added (in comparing with Theorem 1.1) but this condition is trivial. As an example if we are putting $a_{n v}=p_{v} / P_{n}$ (in order to have the $\left|\bar{N}, p_{n}\right|_{k}$ summability), (2.5) is obvious by the following

$$
\sum_{v=1}^{n-1} \widehat{a}_{n, v+1} a_{v v}=\sum_{v=1}^{n-1} \frac{p_{n} P_{v}}{P_{n} P_{n-1}} \frac{p_{v}}{P_{v}}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v}=\frac{p_{n}}{P_{n}}=a_{n n}=O\left(a_{n n}\right)
$$

(2) Let us define the following two groups of conditions

$$
\begin{aligned}
& \text { group } I=\{(1.6),(1.7),(1.9)\} \\
& \text { group } J=\{(2.1),(2.2),(2.3)\}
\end{aligned}
$$

It is clear that (see [1]) $I \Rightarrow J$, but not the converse. Therefore the conditions of Theorem 3.1 are weaker than those of Theorem 1.1.
(3) The condition (1.8) in using impose us to loose powers of estimation. For example in the proof of Theorem 1.1, through the estimations of I_{1} and I_{2}, the power $\left.\lambda_{n}\right|^{k-1}$ has been lost through the estimation when it has been substituted by $\left(\left|\lambda_{n}\right|^{k-1}=O(1)\right)$, while we have not this case on using (2.4).
(4) The sequence (X_{n}) used in Theorem 2.1 is more general and in some sense make some condition is weaker than $\left(X_{n}\right)$ defined in Theorem 1.1.

3. Lemmas

Lemma 3.1. The conditions (1.6), (1.7) and (1.9) implies $\lambda_{n}=O(1)$, as $n \rightarrow \infty$. For the proof see [1].

Lemma 3.2. Let $A \in \Omega$. Then

$$
\begin{aligned}
& \sum_{v=1}^{n-1}\left|\Delta_{n} a_{n-1 m, v}\right| \leq a_{n n} \\
& \sum_{n=v+1}^{m+1}\left|\Delta_{n} a_{n-1 m, v}\right| \leq a_{v v}
\end{aligned}
$$

Lemma 3.3. Let $A \in \Omega$. Then

$$
\begin{aligned}
& \widehat{a}_{n+1, v} \leq a_{n n} \quad \text { for } n \geq v+1 \\
& \sum_{n=v+1}^{m+1} \widehat{a}_{n+1, v} \leq 1, \quad v=0,1, \ldots
\end{aligned}
$$

Lemma 3.4. Let $\left(X_{n}\right)$ be as defined in Theorem 2.1. Then conditions (2.1) and (2.3) implies

$$
\begin{align*}
& n X_{n}\left|\Delta \lambda_{n}\right|=O(1), \quad \text { as } n \rightarrow \infty \tag{3.1}\\
& \sum_{n=1}^{\infty} X\left|\Delta \lambda_{n}\right|<\infty \tag{3.2}
\end{align*}
$$

Proof. Let f_{n} be as defined in Theorem 2.1. Then by (2.1), $\Delta\left|\Delta \lambda_{n}\right| \rightarrow 0$, and hence

$$
\begin{aligned}
n X_{n}\left|\Delta \lambda_{n}\right| & =n X_{n}\left|\sum_{v=n}^{\infty} \Delta\right| \Delta \lambda_{v}| | \\
& \leq n X_{n} \sum_{v=n}^{\infty}|\Delta| \Delta \lambda_{v}| |=O(1) n f_{n}^{-1} f_{n} X_{n} \sum_{v=n}^{\infty}|\Delta| \Delta \lambda_{v}| | \\
& =O(1) n f_{n}^{-1} \sum_{v=n}^{\infty} f_{v} X_{v}|\Delta| \Delta \lambda_{v}| | \\
& =O(1) \sum_{v=n}^{\infty} v f_{v}^{-1} f_{v} X_{v}|\Delta| \Delta \lambda_{v}| |
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=n}^{\infty} v X_{v}|\Delta| \Delta \lambda_{v}| | \\
& =O(1) \\
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right| & \leq \sum_{n=1}^{\infty} X_{n} \sum_{v=n}^{\infty}\left|\Delta \lambda_{v}\right|\left|=\sum_{n=1}^{\infty} f_{n}^{-1} f_{n} X_{n} \sum_{v=n}^{\infty}\right| \Delta\left|\Delta \lambda_{v}\right| \mid \\
& =O(1) \sum_{n=1}^{\infty} f_{n}^{-1} \sum_{v=n}^{\infty} f_{v} X_{v}|\Delta| \Delta \lambda_{v}| | \\
& =O(1) \sum_{v=1}^{\infty} f_{v} X_{v}|\Delta| \Delta \lambda_{v}| | \sum_{n=1}^{v} f_{n}^{-1} .
\end{aligned}
$$

Now, as

$$
\begin{aligned}
\sum_{n=1}^{v} f_{n}^{-1} & =\sum_{n=1}^{v} n^{\beta+\epsilon} f_{n}^{-1} n^{-\beta-\epsilon}, \quad 0<\beta+\epsilon<1 \\
& \leq v^{\beta+\epsilon} f_{v}^{-1} \sum_{n=1}^{v} n^{-\beta-\epsilon}=O(1) v^{\beta+\epsilon} f_{v}^{-1} \int_{0}^{v} x^{-\beta-\epsilon} d x=O(1) v f_{v}^{-1} .
\end{aligned}
$$

Then, we have

$$
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|=O(1) \sum_{n=1}^{\infty} n X_{n}|\Delta| \Delta \lambda_{n}| |<\infty
$$

4. Proof of Theorem 1.2

Let y_{n} denotes the nth term of the A-transform of the series $\sum a_{n} \lambda_{n}$. Then by (1.4), we have, for $n \geq 1$

$$
\begin{aligned}
Y_{n} & =y_{n}-y_{n-1} \\
& =\sum_{v=0}^{n} \widehat{a}_{n v} a_{v} \lambda_{v} \\
& =\sum_{v=1}^{n-1} \Delta\left(\frac{\widehat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{a_{n n} \lambda_{n}}{n} \sum_{v=1}^{n} v a_{v} \\
& =\frac{(n+1) a_{n n} t_{n} \lambda_{n}}{n}-\sum_{v=1}^{n-1} \Delta_{n} a_{n-1, v} \lambda_{v} t_{v} \frac{v+1}{v}+\sum_{v=1}^{n-1} \widehat{a}_{n, v+1} \lambda_{v} t_{v} \frac{1}{v}+\sum_{v=1}^{n-1} \widehat{a}_{n, v+1} \Delta \lambda_{v} t_{v} \\
& =Y_{n 1}+Y_{n 2}+Y_{n 3}+Y_{4} .
\end{aligned}
$$

To complete the proof, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n-1}^{\infty} n^{k-1}\left|Y_{n v}\right|^{k}<\infty, \quad v=1,2,3,4
$$

Applying Holder's inequality,

$$
\begin{aligned}
& \sum_{n=1}^{m+1} n^{k-1}\left|Y_{n 1}\right|^{k}=\sum_{n=1}^{m+1} n^{k-1}\left|\frac{(n+1) a_{n n} t_{n} \lambda_{n}}{n}\right|^{k} \\
&=O(1) \sum_{n=1}^{m+1}\left(n a_{n} n\right)^{k-1} \frac{\left|t_{n}\right|^{k} \lambda_{n} \mid\left(\left|\lambda_{n}\right| X_{n}\right)^{k-1}}{n X_{n}^{k-1}} \\
&=O(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v}\right|\left|t_{v}\right|^{k}}{v X_{v}^{k-1}} \\
&=O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=0}^{v} \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}} \\
&=O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
&=O(1), \\
&=O(1) \sum_{n=1}^{m+1} n^{k-1}\left|\sum_{v=1}^{n-1} \Delta_{n} a_{n-1, v}, \lambda_{v} t_{v} \frac{v+1}{v}\right|^{k} \\
& \sum_{n=1}^{m+1} n^{k-1}\left|Y_{n 2}\right|^{k}=\sum_{n=1}^{m+1} n^{k-1}\left|\sum_{v=1}^{n-1} \Delta_{n} a_{n-1, v} \lambda_{v} \frac{v+1}{v}\right|^{k} \\
&=O(1) \sum_{n=1}^{m+1} n^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{n} a_{n-1, v}\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
&=O(1) \sum_{n=1}^{m+1} n^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{n} a_{n-1, v}\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\left(\sum_{v=1}^{n-1} \Delta_{n} a_{n-1, v} \mid\right)^{k-1} \\
&=O(1) \sum_{n=1}^{m+1}\left(n a_{n n}\right)^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{n} a_{n-1, v}\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \\
&=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{n}, a_{n-1, v}\right| \\
&=O(1) \sum_{v=1}^{m} a_{v v}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \\
& O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
& v X_{v}^{k-1} \\
& \text { as in the case of } Y_{n 1} .
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=1}^{m+1} n^{k-1}\left|Y_{n 3}\right|^{k} & =\sum_{n=1}^{m+1} n^{k-1}\left|\sum_{v=1}^{n-1} \widehat{a}_{n, v+1} \lambda_{v} t_{v} \frac{1}{v}\right|^{k} \\
& =O(1) \sum_{n=1}^{m+1} n^{k-1}\left(\sum_{v=1}^{n-1} \frac{\widehat{a}_{n, v+1}\left|\lambda_{v}\right|\left|t_{v}\right|}{v}\right)^{k} \\
& =O(1) \sum_{n=1}^{m+1} n^{k+1} \sum_{v=1}^{n-1} a_{v v}\left|\widehat{a}_{n, v+1}\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\left(\sum_{v=1}^{n-1} a_{v v} \widehat{a}_{n, v+1}\right)^{k-1} \\
& =O(1) \sum_{n=1}^{m+1}\left(n a_{n n}\right)^{k-1} \sum_{v=1}^{n-1} a_{v v} \widehat{a}_{n, v+1}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v}\right|\left|t_{v}\right|^{K}}{v X_{V}^{k-1}} \sum_{n=v+1}^{m+1} \widehat{a}_{n, v+1}=O(1) \sum_{v=1}^{m} \frac{\left|\lambda_{v}\right|\left|t_{v}\right|^{k}}{V x_{v}^{k-1}} \\
& =O(1), \quad \text { as in the case of } Y_{n 1} . \\
& =O(1) \sum_{n=1}^{m+1} n^{k-1}\left(\sum_{v=1}^{n-1} \widehat{a}_{n, v+1}\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=1}^{m+1} n^{k-1} \sum_{v=1}^{n-1}\left(\widehat{a}_{n, v+1}\right)^{k} \frac{\left|\Delta \lambda_{v}\right|}{X_{v}^{k-1}}\left|t_{v}\right|^{k}\left(\sum_{v=1}^{n-1} X_{v}\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
& =O(1) \sum_{n=1}^{m+1}\left(n a_{n n}\right)^{k-1} \sum_{v=1}^{n-1} \widehat{a}_{n, v+1} \frac{\left|\Delta \lambda_{v}\right|}{X_{v}^{k-1}}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m+1} \frac{\left|\Delta \lambda_{v}\right|}{\left.n_{v}^{k-1}\left|t_{v}\right|^{k-1} \sum_{n=v+1}^{m+1} \widehat{a}_{n, v+1}^{m+1} \Delta \lambda_{v} t_{v}\right|^{k}} \begin{array}{l}
\widehat{a}_{n, v+1} \\
\end{array} \\
& =O(1) \sum_{v=1}^{m} \frac{v\left|\Delta \lambda_{v}\right|}{v X_{v}^{k-1}\left|t_{v}\right|^{k}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& \left|\Delta \lambda_{v}\right| X_{v}+O(1) \sum_{v=1}^{m} v|\Delta| \Delta \lambda_{v}| | X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
&
\end{aligned}
$$

References

[1] H. Sevli and L. Leindler, On the absolute summability factors of infinite series involving quasi-power-increasing sequences, Computer and Mathematics with Applications 57 (2009), 702-709.
[2] B.E. Rhoades, Inclusion theorems for absolute matrix summability methods, J. Math. Anal. Appl. 238 (1999), 82-90.
[3] W.T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl. 322 (2006), 1224-1230.
W.T. Sulaiman, Department of Computer Engineering, College of Engineering, University of Mosul, Iraq.
E-mail: waadsulaiman@hotmail.com

Received March 8, 2011
Accepted May 5, 2012

